EstervQrCode 2.0.0
Library for qr code manipulation
Loading...
Searching...
No Matches
kmeans_index.h
1/***********************************************************************
2 * Software License Agreement (BSD License)
3 *
4 * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
5 * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
6 *
7 * THE BSD LICENSE
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *************************************************************************/
30
31#ifndef OPENCV_FLANN_KMEANS_INDEX_H_
32#define OPENCV_FLANN_KMEANS_INDEX_H_
33
35
36#include <algorithm>
37#include <map>
38#include <limits>
39#include <cmath>
40
41#include "general.h"
42#include "nn_index.h"
43#include "dist.h"
44#include "matrix.h"
45#include "result_set.h"
46#include "heap.h"
47#include "allocator.h"
48#include "random.h"
49#include "saving.h"
50#include "logger.h"
51
52#define BITS_PER_CHAR 8
53#define BITS_PER_BASE 2 // for DNA/RNA sequences
54#define BASE_PER_CHAR (BITS_PER_CHAR/BITS_PER_BASE)
55#define HISTOS_PER_BASE (1<<BITS_PER_BASE)
56
57
58namespace cvflann
59{
60
61struct KMeansIndexParams : public IndexParams
62{
63 KMeansIndexParams(int branching = 32, int iterations = 11,
64 flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
65 float cb_index = 0.2, int trees = 1 )
66 {
67 (*this)["algorithm"] = FLANN_INDEX_KMEANS;
68 // branching factor
69 (*this)["branching"] = branching;
70 // max iterations to perform in one kmeans clustering (kmeans tree)
71 (*this)["iterations"] = iterations;
72 // algorithm used for picking the initial cluster centers for kmeans tree
73 (*this)["centers_init"] = centers_init;
74 // cluster boundary index. Used when searching the kmeans tree
75 (*this)["cb_index"] = cb_index;
76 // number of kmeans trees to search in
77 (*this)["trees"] = trees;
78 }
79};
80
81
88template <typename Distance>
89class KMeansIndex : public NNIndex<Distance>
90{
91public:
92 typedef typename Distance::ElementType ElementType;
93 typedef typename Distance::ResultType DistanceType;
94 typedef typename Distance::CentersType CentersType;
95
96 typedef typename Distance::is_kdtree_distance is_kdtree_distance;
97 typedef typename Distance::is_vector_space_distance is_vector_space_distance;
98
99
100
101 typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
102
106 centersAlgFunction chooseCenters;
107
108
109
120 void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
121 {
122 UniqueRandom r(indices_length);
123
124 int index;
125 for (index=0; index<k; ++index) {
126 bool duplicate = true;
127 int rnd;
128 while (duplicate) {
129 duplicate = false;
130 rnd = r.next();
131 if (rnd<0) {
132 centers_length = index;
133 return;
134 }
135
136 centers[index] = indices[rnd];
137
138 for (int j=0; j<index; ++j) {
139 DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
140 if (sq<1e-16) {
141 duplicate = true;
142 }
143 }
144 }
145 }
146
147 centers_length = index;
148 }
149
150
161 void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
162 {
163 int n = indices_length;
164
165 int rnd = rand_int(n);
166 CV_DbgAssert(rnd >=0 && rnd < n);
167
168 centers[0] = indices[rnd];
169
170 int index;
171 for (index=1; index<k; ++index) {
172
173 int best_index = -1;
174 DistanceType best_val = 0;
175 for (int j=0; j<n; ++j) {
176 DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
177 for (int i=1; i<index; ++i) {
178 DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
179 if (tmp_dist<dist) {
180 dist = tmp_dist;
181 }
182 }
183 if (dist>best_val) {
184 best_val = dist;
185 best_index = j;
186 }
187 }
188 if (best_index!=-1) {
189 centers[index] = indices[best_index];
190 }
191 else {
192 break;
193 }
194 }
195 centers_length = index;
196 }
197
198
212 void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
213 {
214 int n = indices_length;
215
216 double currentPot = 0;
217 DistanceType* closestDistSq = new DistanceType[n];
218
219 // Choose one random center and set the closestDistSq values
220 int index = rand_int(n);
221 CV_DbgAssert(index >=0 && index < n);
222 centers[0] = indices[index];
223
224 for (int i = 0; i < n; i++) {
225 closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
226 closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
227 currentPot += closestDistSq[i];
228 }
229
230
231 const int numLocalTries = 1;
232
233 // Choose each center
234 int centerCount;
235 for (centerCount = 1; centerCount < k; centerCount++) {
236
237 // Repeat several trials
238 double bestNewPot = -1;
239 int bestNewIndex = -1;
240 for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
241
242 // Choose our center - have to be slightly careful to return a valid answer even accounting
243 // for possible rounding errors
244 double randVal = rand_double(currentPot);
245 for (index = 0; index < n-1; index++) {
246 if (randVal <= closestDistSq[index]) break;
247 else randVal -= closestDistSq[index];
248 }
249
250 // Compute the new potential
251 double newPot = 0;
252 for (int i = 0; i < n; i++) {
253 DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
254 newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
255 }
256
257 // Store the best result
258 if ((bestNewPot < 0)||(newPot < bestNewPot)) {
259 bestNewPot = newPot;
260 bestNewIndex = index;
261 }
262 }
263
264 // Add the appropriate center
265 centers[centerCount] = indices[bestNewIndex];
266 currentPot = bestNewPot;
267 for (int i = 0; i < n; i++) {
268 DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
269 closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
270 }
271 }
272
273 centers_length = centerCount;
274
275 delete[] closestDistSq;
276 }
277
278
279
280public:
281
282 flann_algorithm_t getType() const CV_OVERRIDE
283 {
284 return FLANN_INDEX_KMEANS;
285 }
286
287 template<class CentersContainerType>
288 class KMeansDistanceComputer : public cv::ParallelLoopBody
289 {
290 public:
291 KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
292 const int _branching, const int* _indices, const CentersContainerType& _dcenters,
293 const size_t _veclen, std::vector<int> &_new_centroids,
294 std::vector<DistanceType> &_sq_dists)
295 : distance(_distance)
296 , dataset(_dataset)
297 , branching(_branching)
298 , indices(_indices)
299 , dcenters(_dcenters)
300 , veclen(_veclen)
301 , new_centroids(_new_centroids)
302 , sq_dists(_sq_dists)
303 {
304 }
305
306 void operator()(const cv::Range& range) const CV_OVERRIDE
307 {
308 const int begin = range.start;
309 const int end = range.end;
310
311 for( int i = begin; i<end; ++i)
312 {
313 DistanceType sq_dist(distance(dataset[indices[i]], dcenters[0], veclen));
314 int new_centroid(0);
315 for (int j=1; j<branching; ++j) {
316 DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
317 if (sq_dist>new_sq_dist) {
318 new_centroid = j;
319 sq_dist = new_sq_dist;
320 }
321 }
322 sq_dists[i] = sq_dist;
323 new_centroids[i] = new_centroid;
324 }
325 }
326
327 private:
328 Distance distance;
329 const Matrix<ElementType>& dataset;
330 const int branching;
331 const int* indices;
332 const CentersContainerType& dcenters;
333 const size_t veclen;
334 std::vector<int> &new_centroids;
336 KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
337 };
338
346 KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
347 Distance d = Distance())
348 : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
349 {
350 memoryCounter_ = 0;
351
352 size_ = dataset_.rows;
353 veclen_ = dataset_.cols;
354
355 branching_ = get_param(params,"branching",32);
356 trees_ = get_param(params,"trees",1);
357 iterations_ = get_param(params,"iterations",11);
358 if (iterations_<0) {
359 iterations_ = (std::numeric_limits<int>::max)();
360 }
361 centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
362
363 if (centers_init_==FLANN_CENTERS_RANDOM) {
364 chooseCenters = &KMeansIndex::chooseCentersRandom;
365 }
366 else if (centers_init_==FLANN_CENTERS_GONZALES) {
367 chooseCenters = &KMeansIndex::chooseCentersGonzales;
368 }
369 else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
370 chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
371 }
372 else {
373 FLANN_THROW(cv::Error::StsBadArg, "Unknown algorithm for choosing initial centers.");
374 }
375 cb_index_ = 0.4f;
376
377 root_ = new KMeansNodePtr[trees_];
378 indices_ = new int*[trees_];
379
380 for (int i=0; i<trees_; ++i) {
381 root_[i] = NULL;
382 indices_[i] = NULL;
383 }
384 }
385
386
387 KMeansIndex(const KMeansIndex&);
388 KMeansIndex& operator=(const KMeansIndex&);
389
390
396 virtual ~KMeansIndex()
397 {
398 if (root_ != NULL) {
399 free_centers();
400 delete[] root_;
401 }
402 if (indices_!=NULL) {
403 free_indices();
404 delete[] indices_;
405 }
406 }
407
411 size_t size() const CV_OVERRIDE
412 {
413 return size_;
414 }
415
419 size_t veclen() const CV_OVERRIDE
420 {
421 return veclen_;
422 }
423
424
425 void set_cb_index( float index)
426 {
427 cb_index_ = index;
428 }
429
434 int usedMemory() const CV_OVERRIDE
435 {
436 return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
437 }
438
442 void buildIndex() CV_OVERRIDE
443 {
444 if (branching_<2) {
445 FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
446 }
447
448 free_indices();
449
450 for (int i=0; i<trees_; ++i) {
451 indices_[i] = new int[size_];
452 for (size_t j=0; j<size_; ++j) {
453 indices_[i][j] = int(j);
454 }
455 root_[i] = pool_.allocate<KMeansNode>();
456 std::memset(root_[i], 0, sizeof(KMeansNode));
457
458 Distance* dummy = NULL;
459 computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_, dummy);
460
461 computeClustering(root_[i], indices_[i], (int)size_, branching_,0);
462 }
463 }
464
465
466 void saveIndex(FILE* stream) CV_OVERRIDE
467 {
468 save_value(stream, branching_);
469 save_value(stream, iterations_);
470 save_value(stream, memoryCounter_);
471 save_value(stream, cb_index_);
472 save_value(stream, trees_);
473 for (int i=0; i<trees_; ++i) {
474 save_value(stream, *indices_[i], (int)size_);
475 save_tree(stream, root_[i], i);
476 }
477 }
478
479
480 void loadIndex(FILE* stream) CV_OVERRIDE
481 {
482 if (indices_!=NULL) {
483 free_indices();
484 delete[] indices_;
485 }
486 if (root_!=NULL) {
487 free_centers();
488 }
489
490 load_value(stream, branching_);
491 load_value(stream, iterations_);
492 load_value(stream, memoryCounter_);
493 load_value(stream, cb_index_);
494 load_value(stream, trees_);
495
496 indices_ = new int*[trees_];
497 for (int i=0; i<trees_; ++i) {
498 indices_[i] = new int[size_];
499 load_value(stream, *indices_[i], size_);
500 load_tree(stream, root_[i], i);
501 }
502
503 index_params_["algorithm"] = getType();
504 index_params_["branching"] = branching_;
505 index_params_["trees"] = trees_;
506 index_params_["iterations"] = iterations_;
507 index_params_["centers_init"] = centers_init_;
508 index_params_["cb_index"] = cb_index_;
509 }
510
511
521 void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
522 {
523
524 const int maxChecks = get_param(searchParams,"checks",32);
525
526 if (maxChecks==FLANN_CHECKS_UNLIMITED) {
527 findExactNN(root_[0], result, vec);
528 }
529 else {
530 // Priority queue storing intermediate branches in the best-bin-first search
531 const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
532
533 int checks = 0;
534 for (int i=0; i<trees_; ++i) {
535 findNN(root_[i], result, vec, checks, maxChecks, heap);
536 if ((checks >= maxChecks) && result.full())
537 break;
538 }
539
540 BranchSt branch;
541 while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
542 KMeansNodePtr node = branch.node;
543 findNN(node, result, vec, checks, maxChecks, heap);
544 }
545 CV_Assert(result.full());
546 }
547 }
548
556 int getClusterCenters(Matrix<CentersType>& centers)
557 {
558 int numClusters = centers.rows;
559 if (numClusters<1) {
560 FLANN_THROW(cv::Error::StsBadArg, "Number of clusters must be at least 1");
561 }
562
563 DistanceType variance;
564 KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
565
566 int clusterCount = getMinVarianceClusters(root_[0], clusters, numClusters, variance);
567
568 Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
569
570 for (int i=0; i<clusterCount; ++i) {
571 CentersType* center = clusters[i]->pivot;
572 for (size_t j=0; j<veclen_; ++j) {
573 centers[i][j] = center[j];
574 }
575 }
576 delete[] clusters;
577
578 return clusterCount;
579 }
580
581 IndexParams getParameters() const CV_OVERRIDE
582 {
583 return index_params_;
584 }
585
586
587private:
591 struct KMeansNode
592 {
596 CentersType* pivot;
600 DistanceType radius;
604 DistanceType mean_radius;
608 DistanceType variance;
612 int size;
616 KMeansNode** childs;
620 int* indices;
624 int level;
625 };
626 typedef KMeansNode* KMeansNodePtr;
627
631 typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
632
633
634
635
636 void save_tree(FILE* stream, KMeansNodePtr node, int num)
637 {
638 save_value(stream, *node);
639 save_value(stream, *(node->pivot), (int)veclen_);
640 if (node->childs==NULL) {
641 int indices_offset = (int)(node->indices - indices_[num]);
642 save_value(stream, indices_offset);
643 }
644 else {
645 for(int i=0; i<branching_; ++i) {
646 save_tree(stream, node->childs[i], num);
647 }
648 }
649 }
650
651
652 void load_tree(FILE* stream, KMeansNodePtr& node, int num)
653 {
654 node = pool_.allocate<KMeansNode>();
655 load_value(stream, *node);
656 node->pivot = new CentersType[veclen_];
657 load_value(stream, *(node->pivot), (int)veclen_);
658 if (node->childs==NULL) {
659 int indices_offset;
660 load_value(stream, indices_offset);
661 node->indices = indices_[num] + indices_offset;
662 }
663 else {
664 node->childs = pool_.allocate<KMeansNodePtr>(branching_);
665 for(int i=0; i<branching_; ++i) {
666 load_tree(stream, node->childs[i], num);
667 }
668 }
669 }
670
671
675 void free_centers(KMeansNodePtr node)
676 {
677 delete[] node->pivot;
678 if (node->childs!=NULL) {
679 for (int k=0; k<branching_; ++k) {
680 free_centers(node->childs[k]);
681 }
682 }
683 }
684
685 void free_centers()
686 {
687 if (root_ != NULL) {
688 for(int i=0; i<trees_; ++i) {
689 if (root_[i] != NULL) {
690 free_centers(root_[i]);
691 }
692 }
693 }
694 }
695
699 void free_indices()
700 {
701 if (indices_!=NULL) {
702 for(int i=0; i<trees_; ++i) {
703 if (indices_[i]!=NULL) {
704 delete[] indices_[i];
705 indices_[i] = NULL;
706 }
707 }
708 }
709 }
710
719 void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length)
720 {
721 DistanceType variance = 0;
722 CentersType* mean = new CentersType[veclen_];
723 memoryCounter_ += int(veclen_*sizeof(CentersType));
724
725 memset(mean,0,veclen_*sizeof(CentersType));
726
727 for (unsigned int i=0; i<indices_length; ++i) {
728 ElementType* vec = dataset_[indices[i]];
729 for (size_t j=0; j<veclen_; ++j) {
730 mean[j] += vec[j];
731 }
732 variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
733 }
734 float length = static_cast<float>(indices_length);
735 for (size_t j=0; j<veclen_; ++j) {
736 mean[j] = cvflann::round<CentersType>( mean[j] / static_cast<double>(indices_length) );
737 }
738 variance /= static_cast<DistanceType>( length );
739 variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
740
741 DistanceType radius = 0;
742 for (unsigned int i=0; i<indices_length; ++i) {
743 DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
744 if (tmp>radius) {
745 radius = tmp;
746 }
747 }
748
749 node->variance = variance;
750 node->radius = radius;
751 node->pivot = mean;
752 }
753
754
755 void computeBitfieldNodeStatistics(KMeansNodePtr node, int* indices,
756 unsigned int indices_length)
757 {
758 const unsigned int accumulator_veclen = static_cast<unsigned int>(
759 veclen_*sizeof(CentersType)*BITS_PER_CHAR);
760
761 unsigned long long variance = 0ull;
762 CentersType* mean = new CentersType[veclen_];
763 memoryCounter_ += int(veclen_*sizeof(CentersType));
764 unsigned int* mean_accumulator = new unsigned int[accumulator_veclen];
765
766 memset(mean_accumulator, 0, sizeof(unsigned int)*accumulator_veclen);
767
768 for (unsigned int i=0; i<indices_length; ++i) {
769 variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
770 distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
771 unsigned char* vec = (unsigned char*)dataset_[indices[i]];
772 for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
773 mean_accumulator[k] += (vec[l]) & 0x01;
774 mean_accumulator[k+1] += (vec[l]>>1) & 0x01;
775 mean_accumulator[k+2] += (vec[l]>>2) & 0x01;
776 mean_accumulator[k+3] += (vec[l]>>3) & 0x01;
777 mean_accumulator[k+4] += (vec[l]>>4) & 0x01;
778 mean_accumulator[k+5] += (vec[l]>>5) & 0x01;
779 mean_accumulator[k+6] += (vec[l]>>6) & 0x01;
780 mean_accumulator[k+7] += (vec[l]>>7) & 0x01;
781 }
782 }
783 double cnt = static_cast<double>(indices_length);
784 unsigned char* char_mean = (unsigned char*)mean;
785 for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
786 char_mean[l] = static_cast<unsigned char>(
787 (((int)(0.5 + (double)(mean_accumulator[k]) / cnt)))
788 | (((int)(0.5 + (double)(mean_accumulator[k+1]) / cnt))<<1)
789 | (((int)(0.5 + (double)(mean_accumulator[k+2]) / cnt))<<2)
790 | (((int)(0.5 + (double)(mean_accumulator[k+3]) / cnt))<<3)
791 | (((int)(0.5 + (double)(mean_accumulator[k+4]) / cnt))<<4)
792 | (((int)(0.5 + (double)(mean_accumulator[k+5]) / cnt))<<5)
793 | (((int)(0.5 + (double)(mean_accumulator[k+6]) / cnt))<<6)
794 | (((int)(0.5 + (double)(mean_accumulator[k+7]) / cnt))<<7));
795 }
796 variance = static_cast<unsigned long long>(
797 0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
798 variance -= static_cast<unsigned long long>(
799 ensureSquareDistance<Distance>(
800 distance_(mean, ZeroIterator<ElementType>(), veclen_)));
801
802 DistanceType radius = 0;
803 for (unsigned int i=0; i<indices_length; ++i) {
804 DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
805 if (tmp>radius) {
806 radius = tmp;
807 }
808 }
809
810 node->variance = static_cast<DistanceType>(variance);
811 node->radius = radius;
812 node->pivot = mean;
813
814 delete[] mean_accumulator;
815 }
816
817
818 void computeDnaNodeStatistics(KMeansNodePtr node, int* indices,
819 unsigned int indices_length)
820 {
821 const unsigned int histos_veclen = static_cast<unsigned int>(
822 veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
823
824 unsigned long long variance = 0ull;
825 unsigned int* histograms = new unsigned int[histos_veclen];
826 memset(histograms, 0, sizeof(unsigned int)*histos_veclen);
827
828 for (unsigned int i=0; i<indices_length; ++i) {
829 variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
830 distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
831
832 unsigned char* vec = (unsigned char*)dataset_[indices[i]];
833 for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
834 histograms[k + ((vec[l]) & 0x03)]++;
835 histograms[k + 4 + ((vec[l]>>2) & 0x03)]++;
836 histograms[k + 8 + ((vec[l]>>4) & 0x03)]++;
837 histograms[k +12 + ((vec[l]>>6) & 0x03)]++;
838 }
839 }
840
841 CentersType* mean = new CentersType[veclen_];
842 memoryCounter_ += int(veclen_*sizeof(CentersType));
843 unsigned char* char_mean = (unsigned char*)mean;
844 unsigned int* h = histograms;
845 for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
846 char_mean[l] = (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10
847 : h[k] > h[k+3] ? 0x00 : 0x11
848 : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
849 : h[k+1] > h[k+3] ? 0x01 : 0x11)
850 | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000
851 : h[k+4] > h[k+7] ? 0x00 : 0x1100
852 : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
853 : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
854 | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000
855 : h[k+8] >h[k+11] ? 0x00 : 0x110000
856 : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
857 : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
858 | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000
859 : h[k+12] >h[k+15] ? 0x00 : 0x11000000
860 : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
861 : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
862 }
863 variance = static_cast<unsigned long long>(
864 0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
865 variance -= static_cast<unsigned long long>(
866 ensureSquareDistance<Distance>(
867 distance_(mean, ZeroIterator<ElementType>(), veclen_)));
868
869 DistanceType radius = 0;
870 for (unsigned int i=0; i<indices_length; ++i) {
871 DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
872 if (tmp>radius) {
873 radius = tmp;
874 }
875 }
876
877 node->variance = static_cast<DistanceType>(variance);
878 node->radius = radius;
879 node->pivot = mean;
880
881 delete[] histograms;
882 }
883
884
885 template<typename DistType>
886 void computeNodeStatistics(KMeansNodePtr node, int* indices,
887 unsigned int indices_length,
888 const DistType* identifier)
889 {
890 (void)identifier;
891 computeNodeStatistics(node, indices, indices_length);
892 }
893
894 void computeNodeStatistics(KMeansNodePtr node, int* indices,
895 unsigned int indices_length,
896 const cvflann::HammingLUT* identifier)
897 {
898 (void)identifier;
899 computeBitfieldNodeStatistics(node, indices, indices_length);
900 }
901
902 void computeNodeStatistics(KMeansNodePtr node, int* indices,
903 unsigned int indices_length,
904 const cvflann::Hamming<unsigned char>* identifier)
905 {
906 (void)identifier;
907 computeBitfieldNodeStatistics(node, indices, indices_length);
908 }
909
910 void computeNodeStatistics(KMeansNodePtr node, int* indices,
911 unsigned int indices_length,
912 const cvflann::Hamming2<unsigned char>* identifier)
913 {
914 (void)identifier;
915 computeBitfieldNodeStatistics(node, indices, indices_length);
916 }
917
918 void computeNodeStatistics(KMeansNodePtr node, int* indices,
919 unsigned int indices_length,
920 const cvflann::DNAmmingLUT* identifier)
921 {
922 (void)identifier;
923 computeDnaNodeStatistics(node, indices, indices_length);
924 }
925
926 void computeNodeStatistics(KMeansNodePtr node, int* indices,
927 unsigned int indices_length,
928 const cvflann::DNAmming2<unsigned char>* identifier)
929 {
930 (void)identifier;
931 computeDnaNodeStatistics(node, indices, indices_length);
932 }
933
934
935 void refineClustering(int* indices, int indices_length, int branching, CentersType** centers,
936 std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
937 {
938 cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
939 Matrix<double> dcenters(dcenters_buf.data(), branching, veclen_);
940
941 bool converged = false;
942 int iteration = 0;
943 while (!converged && iteration<iterations_) {
944 converged = true;
945 iteration++;
946
947 // compute the new cluster centers
948 for (int i=0; i<branching; ++i) {
949 memset(dcenters[i],0,sizeof(double)*veclen_);
950 radiuses[i] = 0;
951 }
952 for (int i=0; i<indices_length; ++i) {
953 ElementType* vec = dataset_[indices[i]];
954 double* center = dcenters[belongs_to[i]];
955 for (size_t k=0; k<veclen_; ++k) {
956 center[k] += vec[k];
957 }
958 }
959 for (int i=0; i<branching; ++i) {
960 int cnt = count[i];
961 for (size_t k=0; k<veclen_; ++k) {
962 dcenters[i][k] /= cnt;
963 }
964 }
965
966 std::vector<int> new_centroids(indices_length);
967 std::vector<DistanceType> sq_dists(indices_length);
968
969 // reassign points to clusters
970 KMeansDistanceComputer<Matrix<double> > invoker(
971 distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists);
972 parallel_for_(cv::Range(0, (int)indices_length), invoker);
973
974 for (int i=0; i < (int)indices_length; ++i) {
975 DistanceType sq_dist(sq_dists[i]);
976 int new_centroid(new_centroids[i]);
977 if (sq_dist > radiuses[new_centroid]) {
978 radiuses[new_centroid] = sq_dist;
979 }
980 if (new_centroid != belongs_to[i]) {
981 count[belongs_to[i]]--;
982 count[new_centroid]++;
983 belongs_to[i] = new_centroid;
984 converged = false;
985 }
986 }
987
988 for (int i=0; i<branching; ++i) {
989 // if one cluster converges to an empty cluster,
990 // move an element into that cluster
991 if (count[i]==0) {
992 int j = (i+1)%branching;
993 while (count[j]<=1) {
994 j = (j+1)%branching;
995 }
996
997 for (int k=0; k<indices_length; ++k) {
998 if (belongs_to[k]==j) {
999 // for cluster j, we move the furthest element from the center to the empty cluster i
1000 if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
1001 belongs_to[k] = i;
1002 count[j]--;
1003 count[i]++;
1004 break;
1005 }
1006 }
1007 }
1008 converged = false;
1009 }
1010 }
1011 }
1012
1013 for (int i=0; i<branching; ++i) {
1014 centers[i] = new CentersType[veclen_];
1015 memoryCounter_ += (int)(veclen_*sizeof(CentersType));
1016 for (size_t k=0; k<veclen_; ++k) {
1017 centers[i][k] = (CentersType)dcenters[i][k];
1018 }
1019 }
1020 }
1021
1022
1023 void refineBitfieldClustering(int* indices, int indices_length, int branching, CentersType** centers,
1024 std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1025 {
1026 for (int i=0; i<branching; ++i) {
1027 centers[i] = new CentersType[veclen_];
1028 memoryCounter_ += (int)(veclen_*sizeof(CentersType));
1029 }
1030
1031 const unsigned int accumulator_veclen = static_cast<unsigned int>(
1032 veclen_*sizeof(ElementType)*BITS_PER_CHAR);
1033 cv::AutoBuffer<unsigned int> dcenters_buf(branching*accumulator_veclen);
1034 Matrix<unsigned int> dcenters(dcenters_buf.data(), branching, accumulator_veclen);
1035
1036 bool converged = false;
1037 int iteration = 0;
1038 while (!converged && iteration<iterations_) {
1039 converged = true;
1040 iteration++;
1041
1042 // compute the new cluster centers
1043 for (int i=0; i<branching; ++i) {
1044 memset(dcenters[i],0,sizeof(unsigned int)*accumulator_veclen);
1045 radiuses[i] = 0;
1046 }
1047 for (int i=0; i<indices_length; ++i) {
1048 unsigned char* vec = (unsigned char*)dataset_[indices[i]];
1049 unsigned int* dcenter = dcenters[belongs_to[i]];
1050 for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
1051 dcenter[k] += (vec[l]) & 0x01;
1052 dcenter[k+1] += (vec[l]>>1) & 0x01;
1053 dcenter[k+2] += (vec[l]>>2) & 0x01;
1054 dcenter[k+3] += (vec[l]>>3) & 0x01;
1055 dcenter[k+4] += (vec[l]>>4) & 0x01;
1056 dcenter[k+5] += (vec[l]>>5) & 0x01;
1057 dcenter[k+6] += (vec[l]>>6) & 0x01;
1058 dcenter[k+7] += (vec[l]>>7) & 0x01;
1059 }
1060 }
1061 for (int i=0; i<branching; ++i) {
1062 double cnt = static_cast<double>(count[i]);
1063 unsigned int* dcenter = dcenters[i];
1064 unsigned char* charCenter = (unsigned char*)centers[i];
1065 for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
1066 charCenter[l] = static_cast<unsigned char>(
1067 (((int)(0.5 + (double)(dcenter[k]) / cnt)))
1068 | (((int)(0.5 + (double)(dcenter[k+1]) / cnt))<<1)
1069 | (((int)(0.5 + (double)(dcenter[k+2]) / cnt))<<2)
1070 | (((int)(0.5 + (double)(dcenter[k+3]) / cnt))<<3)
1071 | (((int)(0.5 + (double)(dcenter[k+4]) / cnt))<<4)
1072 | (((int)(0.5 + (double)(dcenter[k+5]) / cnt))<<5)
1073 | (((int)(0.5 + (double)(dcenter[k+6]) / cnt))<<6)
1074 | (((int)(0.5 + (double)(dcenter[k+7]) / cnt))<<7));
1075 }
1076 }
1077
1078 std::vector<int> new_centroids(indices_length);
1079 std::vector<DistanceType> dists(indices_length);
1080
1081 // reassign points to clusters
1082 KMeansDistanceComputer<ElementType**> invoker(
1083 distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
1084 parallel_for_(cv::Range(0, (int)indices_length), invoker);
1085
1086 for (int i=0; i < indices_length; ++i) {
1087 DistanceType dist(dists[i]);
1088 int new_centroid(new_centroids[i]);
1089 if (dist > radiuses[new_centroid]) {
1090 radiuses[new_centroid] = dist;
1091 }
1092 if (new_centroid != belongs_to[i]) {
1093 count[belongs_to[i]]--;
1094 count[new_centroid]++;
1095 belongs_to[i] = new_centroid;
1096 converged = false;
1097 }
1098 }
1099
1100 for (int i=0; i<branching; ++i) {
1101 // if one cluster converges to an empty cluster,
1102 // move an element into that cluster
1103 if (count[i]==0) {
1104 int j = (i+1)%branching;
1105 while (count[j]<=1) {
1106 j = (j+1)%branching;
1107 }
1108
1109 for (int k=0; k<indices_length; ++k) {
1110 if (belongs_to[k]==j) {
1111 // for cluster j, we move the furthest element from the center to the empty cluster i
1112 if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
1113 belongs_to[k] = i;
1114 count[j]--;
1115 count[i]++;
1116 break;
1117 }
1118 }
1119 }
1120 converged = false;
1121 }
1122 }
1123 }
1124 }
1125
1126
1127 void refineDnaClustering(int* indices, int indices_length, int branching, CentersType** centers,
1128 std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1129 {
1130 for (int i=0; i<branching; ++i) {
1131 centers[i] = new CentersType[veclen_];
1132 memoryCounter_ += (int)(veclen_*sizeof(CentersType));
1133 }
1134
1135 const unsigned int histos_veclen = static_cast<unsigned int>(
1136 veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
1137 cv::AutoBuffer<unsigned int> histos_buf(branching*histos_veclen);
1138 Matrix<unsigned int> histos(histos_buf.data(), branching, histos_veclen);
1139
1140 bool converged = false;
1141 int iteration = 0;
1142 while (!converged && iteration<iterations_) {
1143 converged = true;
1144 iteration++;
1145
1146 // compute the new cluster centers
1147 for (int i=0; i<branching; ++i) {
1148 memset(histos[i],0,sizeof(unsigned int)*histos_veclen);
1149 radiuses[i] = 0;
1150 }
1151 for (int i=0; i<indices_length; ++i) {
1152 unsigned char* vec = (unsigned char*)dataset_[indices[i]];
1153 unsigned int* h = histos[belongs_to[i]];
1154 for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
1155 h[k + ((vec[l]) & 0x03)]++;
1156 h[k + 4 + ((vec[l]>>2) & 0x03)]++;
1157 h[k + 8 + ((vec[l]>>4) & 0x03)]++;
1158 h[k +12 + ((vec[l]>>6) & 0x03)]++;
1159 }
1160 }
1161 for (int i=0; i<branching; ++i) {
1162 unsigned int* h = histos[i];
1163 unsigned char* charCenter = (unsigned char*)centers[i];
1164 for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
1165 charCenter[l]= (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10
1166 : h[k] > h[k+3] ? 0x00 : 0x11
1167 : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
1168 : h[k+1] > h[k+3] ? 0x01 : 0x11)
1169 | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000
1170 : h[k+4] > h[k+7] ? 0x00 : 0x1100
1171 : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
1172 : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
1173 | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000
1174 : h[k+8] >h[k+11] ? 0x00 : 0x110000
1175 : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
1176 : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
1177 | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000
1178 : h[k+12] >h[k+15] ? 0x00 : 0x11000000
1179 : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
1180 : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
1181 }
1182 }
1183
1184 std::vector<int> new_centroids(indices_length);
1185 std::vector<DistanceType> dists(indices_length);
1186
1187 // reassign points to clusters
1188 KMeansDistanceComputer<ElementType**> invoker(
1189 distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
1190 parallel_for_(cv::Range(0, (int)indices_length), invoker);
1191
1192 for (int i=0; i < indices_length; ++i) {
1193 DistanceType dist(dists[i]);
1194 int new_centroid(new_centroids[i]);
1195 if (dist > radiuses[new_centroid]) {
1196 radiuses[new_centroid] = dist;
1197 }
1198 if (new_centroid != belongs_to[i]) {
1199 count[belongs_to[i]]--;
1200 count[new_centroid]++;
1201 belongs_to[i] = new_centroid;
1202 converged = false;
1203 }
1204 }
1205
1206 for (int i=0; i<branching; ++i) {
1207 // if one cluster converges to an empty cluster,
1208 // move an element into that cluster
1209 if (count[i]==0) {
1210 int j = (i+1)%branching;
1211 while (count[j]<=1) {
1212 j = (j+1)%branching;
1213 }
1214
1215 for (int k=0; k<indices_length; ++k) {
1216 if (belongs_to[k]==j) {
1217 // for cluster j, we move the furthest element from the center to the empty cluster i
1218 if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
1219 belongs_to[k] = i;
1220 count[j]--;
1221 count[i]++;
1222 break;
1223 }
1224 }
1225 }
1226 converged = false;
1227 }
1228 }
1229 }
1230 }
1231
1232
1233 void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length,
1234 int branching, int level, CentersType** centers,
1235 std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1236 {
1237 // compute kmeans clustering for each of the resulting clusters
1238 node->childs = pool_.allocate<KMeansNodePtr>(branching);
1239 int start = 0;
1240 int end = start;
1241 for (int c=0; c<branching; ++c) {
1242 int s = count[c];
1243
1244 DistanceType variance = 0;
1245 DistanceType mean_radius =0;
1246 for (int i=0; i<indices_length; ++i) {
1247 if (belongs_to[i]==c) {
1248 DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
1249 variance += d;
1250 mean_radius += static_cast<DistanceType>( sqrt(d) );
1251 std::swap(indices[i],indices[end]);
1252 std::swap(belongs_to[i],belongs_to[end]);
1253 end++;
1254 }
1255 }
1256 variance /= s;
1257 mean_radius /= s;
1258 variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
1259
1260 node->childs[c] = pool_.allocate<KMeansNode>();
1261 std::memset(node->childs[c], 0, sizeof(KMeansNode));
1262 node->childs[c]->radius = radiuses[c];
1263 node->childs[c]->pivot = centers[c];
1264 node->childs[c]->variance = variance;
1265 node->childs[c]->mean_radius = mean_radius;
1266 computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
1267 start=end;
1268 }
1269 }
1270
1271
1272 void computeAnyBitfieldSubClustering(KMeansNodePtr node, int* indices, int indices_length,
1273 int branching, int level, CentersType** centers,
1274 std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
1275 {
1276 // compute kmeans clustering for each of the resulting clusters
1277 node->childs = pool_.allocate<KMeansNodePtr>(branching);
1278 int start = 0;
1279 int end = start;
1280 for (int c=0; c<branching; ++c) {
1281 int s = count[c];
1282
1283 unsigned long long variance = 0ull;
1284 DistanceType mean_radius =0;
1285 for (int i=0; i<indices_length; ++i) {
1286 if (belongs_to[i]==c) {
1287 DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
1288 variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(d) );
1289 mean_radius += ensureSimpleDistance<Distance>(d);
1290 std::swap(indices[i],indices[end]);
1291 std::swap(belongs_to[i],belongs_to[end]);
1292 end++;
1293 }
1294 }
1295 mean_radius = static_cast<DistanceType>(
1296 0.5f + static_cast<float>(mean_radius) / static_cast<float>(s));
1297 variance = static_cast<unsigned long long>(
1298 0.5 + static_cast<double>(variance) / static_cast<double>(s));
1299 variance -= static_cast<unsigned long long>(
1300 ensureSquareDistance<Distance>(
1301 distance_(centers[c], ZeroIterator<ElementType>(), veclen_)));
1302
1303 node->childs[c] = pool_.allocate<KMeansNode>();
1304 std::memset(node->childs[c], 0, sizeof(KMeansNode));
1305 node->childs[c]->radius = radiuses[c];
1306 node->childs[c]->pivot = centers[c];
1307 node->childs[c]->variance = static_cast<DistanceType>(variance);
1308 node->childs[c]->mean_radius = mean_radius;
1309 computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
1310 start=end;
1311 }
1312 }
1313
1314
1315 template<typename DistType>
1316 void refineAndSplitClustering(
1317 KMeansNodePtr node, int* indices, int indices_length, int branching,
1318 int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1319 int* belongs_to, int* count, const DistType* identifier)
1320 {
1321 (void)identifier;
1322 refineClustering(indices, indices_length, branching, centers, radiuses, belongs_to, count);
1323
1324 computeSubClustering(node, indices, indices_length, branching,
1325 level, centers, radiuses, belongs_to, count);
1326 }
1327
1328
1373 void refineAndSplitClustering(
1374 KMeansNodePtr node, int* indices, int indices_length, int branching,
1375 int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1376 int* belongs_to, int* count, const cvflann::HammingLUT* identifier)
1377 {
1378 (void)identifier;
1379 refineBitfieldClustering(
1380 indices, indices_length, branching, centers, radiuses, belongs_to, count);
1381
1382 computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1383 level, centers, radiuses, belongs_to, count);
1384 }
1385
1386
1387 void refineAndSplitClustering(
1388 KMeansNodePtr node, int* indices, int indices_length, int branching,
1389 int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1390 int* belongs_to, int* count, const cvflann::Hamming<unsigned char>* identifier)
1391 {
1392 (void)identifier;
1393 refineBitfieldClustering(
1394 indices, indices_length, branching, centers, radiuses, belongs_to, count);
1395
1396 computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1397 level, centers, radiuses, belongs_to, count);
1398 }
1399
1400
1401 void refineAndSplitClustering(
1402 KMeansNodePtr node, int* indices, int indices_length, int branching,
1403 int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1404 int* belongs_to, int* count, const cvflann::Hamming2<unsigned char>* identifier)
1405 {
1406 (void)identifier;
1407 refineBitfieldClustering(
1408 indices, indices_length, branching, centers, radiuses, belongs_to, count);
1409
1410 computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1411 level, centers, radiuses, belongs_to, count);
1412 }
1413
1414
1415 void refineAndSplitClustering(
1416 KMeansNodePtr node, int* indices, int indices_length, int branching,
1417 int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1418 int* belongs_to, int* count, const cvflann::DNAmmingLUT* identifier)
1419 {
1420 (void)identifier;
1421 refineDnaClustering(
1422 indices, indices_length, branching, centers, radiuses, belongs_to, count);
1423
1424 computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1425 level, centers, radiuses, belongs_to, count);
1426 }
1427
1428
1429 void refineAndSplitClustering(
1430 KMeansNodePtr node, int* indices, int indices_length, int branching,
1431 int level, CentersType** centers, std::vector<DistanceType>& radiuses,
1432 int* belongs_to, int* count, const cvflann::DNAmming2<unsigned char>* identifier)
1433 {
1434 (void)identifier;
1435 refineDnaClustering(
1436 indices, indices_length, branching, centers, radiuses, belongs_to, count);
1437
1438 computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
1439 level, centers, radiuses, belongs_to, count);
1440 }
1441
1442
1454 void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
1455 {
1456 node->size = indices_length;
1457 node->level = level;
1458
1459 if (indices_length < branching) {
1460 node->indices = indices;
1461 std::sort(node->indices,node->indices+indices_length);
1462 node->childs = NULL;
1463 return;
1464 }
1465
1466 cv::AutoBuffer<int> centers_idx_buf(branching);
1467 int* centers_idx = centers_idx_buf.data();
1468 int centers_length;
1469 (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
1470
1471 if (centers_length<branching) {
1472 node->indices = indices;
1473 std::sort(node->indices,node->indices+indices_length);
1474 node->childs = NULL;
1475 return;
1476 }
1477
1478
1479 std::vector<DistanceType> radiuses(branching);
1480 cv::AutoBuffer<int> count_buf(branching);
1481 int* count = count_buf.data();
1482 for (int i=0; i<branching; ++i) {
1483 radiuses[i] = 0;
1484 count[i] = 0;
1485 }
1486
1487 // assign points to clusters
1488 cv::AutoBuffer<int> belongs_to_buf(indices_length);
1489 int* belongs_to = belongs_to_buf.data();
1490 for (int i=0; i<indices_length; ++i) {
1491 DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_);
1492 belongs_to[i] = 0;
1493 for (int j=1; j<branching; ++j) {
1494 DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_);
1495 if (sq_dist>new_sq_dist) {
1496 belongs_to[i] = j;
1497 sq_dist = new_sq_dist;
1498 }
1499 }
1500 if (sq_dist>radiuses[belongs_to[i]]) {
1501 radiuses[belongs_to[i]] = sq_dist;
1502 }
1503 count[belongs_to[i]]++;
1504 }
1505
1506 CentersType** centers = new CentersType*[branching];
1507
1508 Distance* dummy = NULL;
1509 refineAndSplitClustering(node, indices, indices_length, branching, level,
1510 centers, radiuses, belongs_to, count, dummy);
1511
1512 delete[] centers;
1513 }
1514
1515
1529 void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
1530 const cv::Ptr<Heap<BranchSt>>& heap)
1531 {
1532 // Ignore those clusters that are too far away
1533 {
1534 DistanceType bsq = distance_(vec, node->pivot, veclen_);
1535 DistanceType rsq = node->radius;
1536 DistanceType wsq = result.worstDist();
1537
1538 if (isSquareDistance<Distance>())
1539 {
1540 DistanceType val = bsq-rsq-wsq;
1541 if ((val>0) && (val*val > 4*rsq*wsq))
1542 return;
1543 }
1544 else
1545 {
1546 if (bsq-rsq > wsq)
1547 return;
1548 }
1549 }
1550
1551 if (node->childs==NULL) {
1552 if ((checks>=maxChecks) && result.full()) {
1553 return;
1554 }
1555 checks += node->size;
1556 for (int i=0; i<node->size; ++i) {
1557 int index = node->indices[i];
1558 DistanceType dist = distance_(dataset_[index], vec, veclen_);
1559 result.addPoint(dist, index);
1560 }
1561 }
1562 else {
1563 DistanceType* domain_distances = new DistanceType[branching_];
1564 int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
1565 delete[] domain_distances;
1566 findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
1567 }
1568 }
1569
1578 int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, const cv::Ptr<Heap<BranchSt>>& heap)
1579 {
1580
1581 int best_index = 0;
1582 domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
1583 for (int i=1; i<branching_; ++i) {
1584 domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
1585 if (domain_distances[i]<domain_distances[best_index]) {
1586 best_index = i;
1587 }
1588 }
1589
1590 // float* best_center = node->childs[best_index]->pivot;
1591 for (int i=0; i<branching_; ++i) {
1592 if (i != best_index) {
1593 domain_distances[i] -= cvflann::round<DistanceType>(
1594 cb_index_*node->childs[i]->variance );
1595
1596 // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
1597 // if (domain_distances[i]<dist_to_border) {
1598 // domain_distances[i] = dist_to_border;
1599 // }
1600 heap->insert(BranchSt(node->childs[i],domain_distances[i]));
1601 }
1602 }
1603
1604 return best_index;
1605 }
1606
1607
1611 void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
1612 {
1613 // Ignore those clusters that are too far away
1614 {
1615 DistanceType bsq = distance_(vec, node->pivot, veclen_);
1616 DistanceType rsq = node->radius;
1617 DistanceType wsq = result.worstDist();
1618
1619 if (isSquareDistance<Distance>())
1620 {
1621 DistanceType val = bsq-rsq-wsq;
1622 if ((val>0) && (val*val > 4*rsq*wsq))
1623 return;
1624 }
1625 else
1626 {
1627 if (bsq-rsq > wsq)
1628 return;
1629 }
1630 }
1631
1632
1633 if (node->childs==NULL) {
1634 for (int i=0; i<node->size; ++i) {
1635 int index = node->indices[i];
1636 DistanceType dist = distance_(dataset_[index], vec, veclen_);
1637 result.addPoint(dist, index);
1638 }
1639 }
1640 else {
1641 int* sort_indices = new int[branching_];
1642
1643 getCenterOrdering(node, vec, sort_indices);
1644
1645 for (int i=0; i<branching_; ++i) {
1646 findExactNN(node->childs[sort_indices[i]],result,vec);
1647 }
1648
1649 delete[] sort_indices;
1650 }
1651 }
1652
1653
1659 void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
1660 {
1661 DistanceType* domain_distances = new DistanceType[branching_];
1662 for (int i=0; i<branching_; ++i) {
1663 DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
1664
1665 int j=0;
1666 while (domain_distances[j]<dist && j<i)
1667 j++;
1668 for (int k=i; k>j; --k) {
1669 domain_distances[k] = domain_distances[k-1];
1670 sort_indices[k] = sort_indices[k-1];
1671 }
1672 domain_distances[j] = dist;
1673 sort_indices[j] = i;
1674 }
1675 delete[] domain_distances;
1676 }
1677
1683 DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
1684 {
1685 DistanceType sum = 0;
1686 DistanceType sum2 = 0;
1687
1688 for (int i=0; i<veclen_; ++i) {
1689 DistanceType t = c[i]-p[i];
1690 sum += t*(q[i]-(c[i]+p[i])/2);
1691 sum2 += t*t;
1692 }
1693
1694 return sum*sum/sum2;
1695 }
1696
1697
1707 int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
1708 {
1709 int clusterCount = 1;
1710 clusters[0] = root;
1711
1712 DistanceType meanVariance = root->variance*root->size;
1713
1714 while (clusterCount<clusters_length) {
1715 DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
1716 int splitIndex = -1;
1717
1718 for (int i=0; i<clusterCount; ++i) {
1719 if (clusters[i]->childs != NULL) {
1720
1721 DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
1722
1723 for (int j=0; j<branching_; ++j) {
1724 variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
1725 }
1726 if (variance<minVariance) {
1727 minVariance = variance;
1728 splitIndex = i;
1729 }
1730 }
1731 }
1732
1733 if (splitIndex==-1) break;
1734 if ( (branching_+clusterCount-1) > clusters_length) break;
1735
1736 meanVariance = minVariance;
1737
1738 // split node
1739 KMeansNodePtr toSplit = clusters[splitIndex];
1740 clusters[splitIndex] = toSplit->childs[0];
1741 for (int i=1; i<branching_; ++i) {
1742 clusters[clusterCount++] = toSplit->childs[i];
1743 }
1744 }
1745
1746 varianceValue = meanVariance/root->size;
1747 return clusterCount;
1748 }
1749
1750private:
1752 int branching_;
1753
1755 int trees_;
1756
1758 int iterations_;
1759
1761 flann_centers_init_t centers_init_;
1762
1769 float cb_index_;
1770
1774 const Matrix<ElementType> dataset_;
1775
1777 IndexParams index_params_;
1778
1782 size_t size_;
1783
1787 size_t veclen_;
1788
1792 KMeansNodePtr* root_;
1793
1797 int** indices_;
1798
1802 Distance distance_;
1803
1807 PooledAllocator pool_;
1808
1812 int memoryCounter_;
1813};
1814
1815}
1816
1818
1819#endif //OPENCV_FLANN_KMEANS_INDEX_H_
T begin(T... args)
Automatically Allocated Buffer Class.
Definition utility.hpp:102
Base class for parallel data processors.
Definition utility.hpp:577
Template class specifying a continuous subsequence (slice) of a sequence.
Definition types.hpp:623
T distance(T... args)
double double end
Definition core_c.h:1381
double start
Definition core_c.h:1381
int index
Definition core_c.h:634
CvSize size
Definition core_c.h:112
int count
Definition core_c.h:1413
CvArr * mean
Definition core_c.h:1419
const CvArr const CvArr CvArr * result
Definition core_c.h:1423
CV_EXPORTS void parallel_for_(const Range &range, const ParallelLoopBody &body, double nstripes=-1.)
Parallel data processor.
#define CV_OVERRIDE
Definition cvdef.h:792
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails.
Definition base.hpp:342
#define CV_DbgAssert(expr)
Definition base.hpp:375
CvRect r
Definition imgproc_c.h:984
CvArr * sum
Definition imgproc_c.h:61
CvPoint2D32f float * radius
Definition imgproc_c.h:534
CvArr CvSize range
Definition imgproc_c.h:781
CvArr CvPoint2D32f center
Definition imgproc_c.h:270
CV_EXPORTS OutputArray int double double InputArray OutputArray int int bool double k
Definition imgproc.hpp:2133
T memset(T... args)
T min(T... args)
@ StsError
unknown /unspecified error
Definition base.hpp:71
@ StsBadArg
function arg/param is bad
Definition base.hpp:74
CV_EXPORTS int getThreadID()
Definition flann.hpp:60
T sort(T... args)
T sqrt(T... args)
Definition cvstd_wrapper.hpp:74
T swap(T... args)