EstervQrCode 2.0.0
Library for qr code manipulation
Loading...
Searching...
No Matches
objdetect.hpp
1/*M///////////////////////////////////////////////////////////////////////////////////////
2//
3// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4//
5// By downloading, copying, installing or using the software you agree to this license.
6// If you do not agree to this license, do not download, install,
7// copy or use the software.
8//
9//
10// License Agreement
11// For Open Source Computer Vision Library
12//
13// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16// Third party copyrights are property of their respective owners.
17//
18// Redistribution and use in source and binary forms, with or without modification,
19// are permitted provided that the following conditions are met:
20//
21// * Redistribution's of source code must retain the above copyright notice,
22// this list of conditions and the following disclaimer.
23//
24// * Redistribution's in binary form must reproduce the above copyright notice,
25// this list of conditions and the following disclaimer in the documentation
26// and/or other materials provided with the distribution.
27//
28// * The name of the copyright holders may not be used to endorse or promote products
29// derived from this software without specific prior written permission.
30//
31// This software is provided by the copyright holders and contributors "as is" and
32// any express or implied warranties, including, but not limited to, the implied
33// warranties of merchantability and fitness for a particular purpose are disclaimed.
34// In no event shall the Intel Corporation or contributors be liable for any direct,
35// indirect, incidental, special, exemplary, or consequential damages
36// (including, but not limited to, procurement of substitute goods or services;
37// loss of use, data, or profits; or business interruption) however caused
38// and on any theory of liability, whether in contract, strict liability,
39// or tort (including negligence or otherwise) arising in any way out of
40// the use of this software, even if advised of the possibility of such damage.
41//
42//M*/
43
44#ifndef OPENCV_OBJDETECT_HPP
45#define OPENCV_OBJDETECT_HPP
46
47#include "opencv2/core.hpp"
48#include "opencv2/objdetect/aruco_detector.hpp"
49#include "opencv2/objdetect/graphical_code_detector.hpp"
50
136typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
137
138namespace cv
139{
140
143
145
151{
152public:
153 SimilarRects(double _eps) : eps(_eps) {}
154 inline bool operator()(const Rect& r1, const Rect& r2) const
155 {
156 double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5;
157 return std::abs(r1.x - r2.x) <= delta &&
158 std::abs(r1.y - r2.y) <= delta &&
159 std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
160 std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
161 }
162 double eps;
163};
164
180CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
183 int groupThreshold, double eps = 0.2);
185CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
186 double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
189 std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
192 std::vector<double>& foundScales,
193 double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
195
198
199template<> struct DefaultDeleter<CvHaarClassifierCascade>{ CV_EXPORTS void operator ()(CvHaarClassifierCascade* obj) const; };
200
205 };
206
208{
209public:
211 virtual bool empty() const CV_OVERRIDE = 0;
212 virtual bool load( const String& filename ) = 0;
213 virtual void detectMultiScale( InputArray image,
214 CV_OUT std::vector<Rect>& objects,
215 double scaleFactor,
216 int minNeighbors, int flags,
217 Size minSize, Size maxSize ) = 0;
218
219 virtual void detectMultiScale( InputArray image,
220 CV_OUT std::vector<Rect>& objects,
221 CV_OUT std::vector<int>& numDetections,
222 double scaleFactor,
223 int minNeighbors, int flags,
224 Size minSize, Size maxSize ) = 0;
225
226 virtual void detectMultiScale( InputArray image,
227 CV_OUT std::vector<Rect>& objects,
228 CV_OUT std::vector<int>& rejectLevels,
229 CV_OUT std::vector<double>& levelWeights,
230 double scaleFactor,
231 int minNeighbors, int flags,
232 Size minSize, Size maxSize,
233 bool outputRejectLevels ) = 0;
234
235 virtual bool isOldFormatCascade() const = 0;
236 virtual Size getOriginalWindowSize() const = 0;
237 virtual int getFeatureType() const = 0;
238 virtual void* getOldCascade() = 0;
239
241 {
242 public:
243 virtual ~MaskGenerator() {}
244 virtual Mat generateMask(const Mat& src)=0;
245 virtual void initializeMask(const Mat& /*src*/) { }
246 };
247 virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
249};
250
258{
259public:
269 CV_WRAP bool empty() const;
276 CV_WRAP bool load( const String& filename );
281 CV_WRAP bool read( const FileNode& node );
282
298 CV_OUT std::vector<Rect>& objects,
299 double scaleFactor = 1.1,
300 int minNeighbors = 3, int flags = 0,
301 Size minSize = Size(),
302 Size maxSize = Size() );
303
319 CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
321 CV_OUT std::vector<int>& numDetections,
322 double scaleFactor=1.1,
323 int minNeighbors=3, int flags=0,
324 Size minSize=Size(),
325 Size maxSize=Size() );
326
344 CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
345 CV_OUT std::vector<Rect>& objects,
348 double scaleFactor = 1.1,
349 int minNeighbors = 3, int flags = 0,
350 Size minSize = Size(),
351 Size maxSize = Size(),
352 bool outputRejectLevels = false );
353
358
359 CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
360
363
365};
366
369
373
384
403{
404public:
405 enum HistogramNormType { L2Hys = 0
406 };
407 enum { DEFAULT_NLEVELS = 64
408 };
409 enum DescriptorStorageFormat { DESCR_FORMAT_COL_BY_COL, DESCR_FORMAT_ROW_BY_ROW };
410
415 CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
416 cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
417 histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
418 free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
419 {}
420
435 CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
436 Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
437 HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys,
438 double _L2HysThreshold=0.2, bool _gammaCorrection=false,
439 int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
440 : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
441 nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
442 histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
443 gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
444 {}
445
452 {
453 load(filename);
454 }
455
460 {
461 d.copyTo(*this);
462 }
463
466 virtual ~HOGDescriptor() {}
467
471
475
478 CV_WRAP double getWinSigma() const;
479
485 CV_WRAP virtual void setSVMDetector(InputArray svmdetector);
486
490 virtual bool read(FileNode& fn);
491
496 virtual void write(FileStorage& fs, const String& objname) const;
497
502 CV_WRAP virtual bool load(const String& filename, const String& objname = String());
503
508 CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
509
513 virtual void copyTo(HOGDescriptor& c) const;
514
524 CV_WRAP virtual void compute(InputArray img,
525 CV_OUT std::vector<float>& descriptors,
526 Size winStride = Size(), Size padding = Size(),
527 const std::vector<Point>& locations = std::vector<Point>()) const;
528
540 CV_WRAP virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
542 double hitThreshold = 0, Size winStride = Size(),
543 Size padding = Size(),
544 const std::vector<Point>& searchLocations = std::vector<Point>()) const;
545
556 virtual void detect(InputArray img, CV_OUT std::vector<Point>& foundLocations,
557 double hitThreshold = 0, Size winStride = Size(),
558 Size padding = Size(),
559 const std::vector<Point>& searchLocations=std::vector<Point>()) const;
560
576 CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
577 CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
578 Size winStride = Size(), Size padding = Size(), double scale = 1.05,
579 double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const;
580
595 virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
596 double hitThreshold = 0, Size winStride = Size(),
597 Size padding = Size(), double scale = 1.05,
598 double groupThreshold = 2.0, bool useMeanshiftGrouping = false) const;
599
607 CV_WRAP virtual void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs,
608 Size paddingTL = Size(), Size paddingBR = Size()) const;
609
613
619
622
625
628
631
634
637
640
643
646
649
652
655
658
661
664
676 virtual void detectROI(InputArray img, const std::vector<cv::Point> &locations,
677 CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
678 double hitThreshold = 0, cv::Size winStride = Size(),
679 cv::Size padding = Size()) const;
680
689 virtual void detectMultiScaleROI(InputArray img,
690 CV_OUT std::vector<cv::Rect>& foundLocations,
691 std::vector<DetectionROI>& locations,
692 double hitThreshold = 0,
693 int groupThreshold = 0) const;
694
701 void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
702};
704
707
709protected:
710 QRCodeEncoder(); // use ::create()
711public:
712 virtual ~QRCodeEncoder();
713
715 MODE_AUTO = -1,
716 MODE_NUMERIC = 1, // 0b0001
717 MODE_ALPHANUMERIC = 2, // 0b0010
718 MODE_BYTE = 4, // 0b0100
719 MODE_ECI = 7, // 0b0111
720 MODE_KANJI = 8, // 0b1000
721 MODE_STRUCTURED_APPEND = 3 // 0b0011
722 };
723
725 CORRECT_LEVEL_L = 0,
726 CORRECT_LEVEL_M = 1,
727 CORRECT_LEVEL_Q = 2,
728 CORRECT_LEVEL_H = 3
729 };
730
732 ECI_UTF8 = 26
733 };
734
752
756 static CV_WRAP
758
763 CV_WRAP virtual void encode(const String& encoded_info, OutputArray qrcode) = 0;
764
769 CV_WRAP virtual void encodeStructuredAppend(const String& encoded_info, OutputArrayOfArrays qrcodes) = 0;
770
771};
773{
774public:
776
787
793
801 CV_WRAP cv::String decodeCurved(InputArray img, InputArray points, OutputArray straight_qrcode = noArray());
802
810 OutputArray straight_qrcode = noArray());
811};
812
864
866}
867
868#include "opencv2/objdetect/detection_based_tracker.hpp"
869#include "opencv2/objdetect/face.hpp"
870#include "opencv2/objdetect/charuco_detector.hpp"
871#include "opencv2/objdetect/barcode.hpp"
872
873#endif
This is a base class for all more or less complex algorithms in OpenCV.
Definition core.hpp:3197
Definition objdetect.hpp:241
virtual void initializeMask(const Mat &)
Definition objdetect.hpp:245
virtual ~MaskGenerator()
Definition objdetect.hpp:243
virtual Mat generateMask(const Mat &src)=0
Definition objdetect.hpp:208
virtual bool empty() const CV_OVERRIDE=0
Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read.
virtual Ptr< MaskGenerator > getMaskGenerator()=0
virtual void setMaskGenerator(const Ptr< MaskGenerator > &maskGenerator)=0
Cascade classifier class for object detection.
Definition objdetect.hpp:258
Ptr< BaseCascadeClassifier > cc
Definition objdetect.hpp:364
CV_WRAP int getFeatureType() const
CV_WRAP void detectMultiScale(InputArray image, CV_OUT std::vector< Rect > &objects, double scaleFactor=1.1, int minNeighbors=3, int flags=0, Size minSize=Size(), Size maxSize=Size())
Detects objects of different sizes in the input image. The detected objects are returned as a list of...
CV_WRAP bool empty() const
Checks whether the classifier has been loaded.
CV_WRAP bool isOldFormatCascade() const
CV_WRAP CascadeClassifier(const String &filename)
Loads a classifier from a file.
CV_WRAP_AS(detectMultiScale3) void detectMultiScale(InputArray image
CV_WRAP Size getOriginalWindowSize() const
CV_WRAP CascadeClassifier()
void setMaskGenerator(const Ptr< BaseCascadeClassifier::MaskGenerator > &maskGenerator)
Ptr< BaseCascadeClassifier::MaskGenerator > getMaskGenerator()
CV_WRAP bool load(const String &filename)
Loads a classifier from a file.
CV_WRAP bool read(const FileNode &node)
Reads a classifier from a FileStorage node.
CV_WRAP_AS(detectMultiScale2) void detectMultiScale(InputArray image
static CV_WRAP bool convert(const String &oldcascade, const String &newcascade)
File Storage Node class.
Definition persistence.hpp:482
XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or readi...
Definition persistence.hpp:304
Definition graphical_code_detector.hpp:14
n-dimensional dense array class
Definition mat.hpp:812
Definition objdetect.hpp:813
CV_WRAP const aruco::DetectorParameters & getArucoParameters() const
Aruco detector parameters are used to search for the finder patterns.
CV_WRAP QRCodeDetectorAruco(const QRCodeDetectorAruco::Params &params)
QR code detector constructor for Aruco-based algorithm. See cv::QRCodeDetectorAruco::Params.
CV_WRAP const QRCodeDetectorAruco::Params & getDetectorParameters() const
Detector parameters getter. See cv::QRCodeDetectorAruco::Params.
CV_WRAP QRCodeDetectorAruco & setDetectorParameters(const QRCodeDetectorAruco::Params &params)
Detector parameters setter. See cv::QRCodeDetectorAruco::Params.
CV_WRAP void setArucoParameters(const aruco::DetectorParameters &params)
Aruco detector parameters are used to search for the finder patterns.
Definition objdetect.hpp:773
CV_WRAP std::string detectAndDecodeCurved(InputArray img, OutputArray points=noArray(), OutputArray straight_qrcode=noArray())
Both detects and decodes QR code on a curved surface.
CV_WRAP QRCodeDetector & setEpsY(double epsY)
sets the epsilon used during the vertical scan of QR code stop marker detection.
CV_WRAP cv::String decodeCurved(InputArray img, InputArray points, OutputArray straight_qrcode=noArray())
Decodes QR code on a curved surface in image once it's found by the detect() method.
CV_WRAP QRCodeDetector & setUseAlignmentMarkers(bool useAlignmentMarkers)
use markers to improve the position of the corners of the QR code
CV_WRAP QRCodeDetector & setEpsX(double epsX)
sets the epsilon used during the horizontal scan of QR code stop marker detection.
CV_WRAP QRCodeDetector()
Definition objdetect.hpp:708
virtual ~QRCodeEncoder()
ECIEncodings
Definition objdetect.hpp:731
static CV_WRAP Ptr< QRCodeEncoder > create(const QRCodeEncoder::Params &parameters=QRCodeEncoder::Params())
Constructor.
virtual CV_WRAP void encode(const String &encoded_info, OutputArray qrcode)=0
Generates QR code from input string.
EncodeMode
Definition objdetect.hpp:714
virtual CV_WRAP void encodeStructuredAppend(const String &encoded_info, OutputArrayOfArrays qrcodes)=0
Generates QR code from input string in Structured Append mode. The encoded message is splitting over ...
CorrectionLevel
Definition objdetect.hpp:724
Template class for 2D rectangles.
Definition types.hpp:444
_Tp x
x coordinate of the top-left corner
Definition types.hpp:480
_Tp y
y coordinate of the top-left corner
Definition types.hpp:481
_Tp width
width of the rectangle
Definition types.hpp:482
_Tp height
height of the rectangle
Definition types.hpp:483
This class is used for grouping object candidates detected by Cascade Classifier, HOG etc.
Definition objdetect.hpp:151
double eps
Definition objdetect.hpp:162
SimilarRects(double _eps)
Definition objdetect.hpp:153
bool operator()(const Rect &r1, const Rect &r2) const
Definition objdetect.hpp:154
Template class for specifying the size of an image or rectangle.
Definition types.hpp:335
Definition mat.hpp:2433
Definition mat.hpp:387
This type is very similar to InputArray except that it is used for input/output and output function p...
Definition mat.hpp:296
Size2i Size
Definition types.hpp:370
CV_EXPORTS InputOutputArray noArray()
const CvArr const CvArr const CvArr CvArr int flags
Definition core_c.h:1342
CvScalar scale
Definition core_c.h:1088
const char const char ** filename
Definition core_c.h:2630
#define CV_EXPORTS_W_SIMPLE
Definition cvdef.h:473
#define CV_EXPORTS
Definition cvdef.h:435
#define CV_IN_OUT
Definition cvdef.h:477
#define CV_OVERRIDE
Definition cvdef.h:792
#define CV_OUT
Definition cvdef.h:478
#define CV_EXPORTS_W
Definition cvdef.h:472
#define CV_PROP
Definition cvdef.h:479
#define CV_PROP_RW
Definition cvdef.h:480
#define CV_WRAP
Definition cvdef.h:481
CvSize int int int CvPoint int delta
Definition imgproc_c.h:1168
int CvMemStorage int double eps
Definition imgproc_c.h:493
CV_EXPORTS OutputArray int double double InputArray OutputArray int blockSize
Definition imgproc.hpp:2132
CV_EXPORTS Ptr< BaseCascadeClassifier::MaskGenerator > createFaceDetectionMaskGenerator()
@ CASCADE_DO_CANNY_PRUNING
Definition objdetect.hpp:201
@ CASCADE_SCALE_IMAGE
Definition objdetect.hpp:202
@ CASCADE_FIND_BIGGEST_OBJECT
Definition objdetect.hpp:203
@ CASCADE_DO_ROUGH_SEARCH
Definition objdetect.hpp:204
CV_EXPORTS void groupRectangles_meanshift(std::vector< Rect > &rectList, std::vector< double > &foundWeights, std::vector< double > &foundScales, double detectThreshold=0.0, Size winDetSize=Size(64, 128))
CV_EXPORTS void groupRectangles(std::vector< Rect > &rectList, int groupThreshold, double eps=0.2)
Groups the object candidate rectangles.
const IplImage * image
Definition videoio_c.h:131
T min(T... args)
"black box" representation of the file storage associated with a file on disk.
Definition calib3d.hpp:441
Definition cvstd_wrapper.hpp:32
struct for detection region of interest (ROI)
Definition objdetect.hpp:376
std::vector< double > confidences
vector that will contain confidence values for each location
Definition objdetect.hpp:382
double scale
scale(size) of the bounding box
Definition objdetect.hpp:378
std::vector< cv::Point > locations
set of requested locations to be evaluated
Definition objdetect.hpp:380
Implementation of HOG (Histogram of Oriented Gradients) descriptor and object detector.
Definition objdetect.hpp:403
CV_PROP Size winSize
Detection window size. Align to block size and block stride. Default value is Size(64,...
Definition objdetect.hpp:621
CV_WRAP size_t getDescriptorSize() const
Returns the number of coefficients required for the classification.
virtual void detectMultiScale(InputArray img, CV_OUT std::vector< Rect > &foundLocations, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), double scale=1.05, double groupThreshold=2.0, bool useMeanshiftGrouping=false) const
Detects objects of different sizes in the input image. The detected objects are returned as a list of...
DescriptorStorageFormat
Definition objdetect.hpp:409
@ DESCR_FORMAT_COL_BY_COL
Definition objdetect.hpp:409
CV_WRAP HOGDescriptor(const String &filename)
Definition objdetect.hpp:451
CV_WRAP HOGDescriptor()
Creates the HOG descriptor and detector with default parameters.
Definition objdetect.hpp:415
CV_PROP std::vector< float > svmDetector
coefficients for the linear SVM classifier.
Definition objdetect.hpp:651
CV_WRAP bool checkDetectorSize() const
Checks if detector size equal to descriptor size.
CV_PROP bool gammaCorrection
Flag to specify whether the gamma correction preprocessing is required or not.
Definition objdetect.hpp:648
virtual bool read(FileNode &fn)
Reads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file node.
virtual void write(FileStorage &fs, const String &objname) const
Stores HOGDescriptor parameters and coefficients for the linear SVM classifier in a file storage.
virtual CV_WRAP void compute(InputArray img, CV_OUT std::vector< float > &descriptors, Size winStride=Size(), Size padding=Size(), const std::vector< Point > &locations=std::vector< Point >()) const
Computes HOG descriptors of given image.
virtual CV_WRAP bool load(const String &filename, const String &objname=String())
loads HOGDescriptor parameters and coefficients for the linear SVM classifier from a file
UMat oclSvmDetector
coefficients for the linear SVM classifier used when OpenCL is enabled
Definition objdetect.hpp:654
virtual CV_WRAP void save(const String &filename, const String &objname=String()) const
saves HOGDescriptor parameters and coefficients for the linear SVM classifier to a file
CV_PROP bool signedGradient
Indicates signed gradient will be used or not.
Definition objdetect.hpp:663
CV_PROP int derivAperture
not documented
Definition objdetect.hpp:636
CV_PROP int nlevels
Maximum number of detection window increases. Default value is 64.
Definition objdetect.hpp:660
CV_PROP double L2HysThreshold
L2-Hys normalization method shrinkage.
Definition objdetect.hpp:645
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, HOGDescriptor::HistogramNormType _histogramNormType=HOGDescriptor::L2Hys, double _L2HysThreshold=0.2, bool _gammaCorrection=false, int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
Definition objdetect.hpp:435
float free_coef
not documented
Definition objdetect.hpp:657
static CV_WRAP std::vector< float > getDefaultPeopleDetector()
Returns coefficients of the classifier trained for people detection (for 64x128 windows).
CV_PROP int nbins
Number of bins used in the calculation of histogram of gradients. Default value is 9.
Definition objdetect.hpp:633
virtual ~HOGDescriptor()
Default destructor.
Definition objdetect.hpp:466
virtual void detect(InputArray img, CV_OUT std::vector< Point > &foundLocations, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), const std::vector< Point > &searchLocations=std::vector< Point >()) const
Performs object detection without a multi-scale window.
CV_PROP double winSigma
Gaussian smoothing window parameter.
Definition objdetect.hpp:639
CV_PROP HOGDescriptor::HistogramNormType histogramNormType
histogramNormType
Definition objdetect.hpp:642
virtual CV_WRAP void computeGradient(InputArray img, InputOutputArray grad, InputOutputArray angleOfs, Size paddingTL=Size(), Size paddingBR=Size()) const
Computes gradients and quantized gradient orientations.
HistogramNormType
Definition objdetect.hpp:405
virtual CV_WRAP void detect(InputArray img, CV_OUT std::vector< Point > &foundLocations, CV_OUT std::vector< double > &weights, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), const std::vector< Point > &searchLocations=std::vector< Point >()) const
Performs object detection without a multi-scale window.
virtual void copyTo(HOGDescriptor &c) const
clones the HOGDescriptor
CV_PROP Size cellSize
Cell size. Default value is Size(8,8).
Definition objdetect.hpp:630
HOGDescriptor(const HOGDescriptor &d)
Definition objdetect.hpp:459
virtual void detectROI(InputArray img, const std::vector< cv::Point > &locations, CV_OUT std::vector< cv::Point > &foundLocations, CV_OUT std::vector< double > &confidences, double hitThreshold=0, cv::Size winStride=Size(), cv::Size padding=Size()) const
evaluate specified ROI and return confidence value for each location
CV_PROP Size blockSize
Block size in pixels. Align to cell size. Default value is Size(16,16).
Definition objdetect.hpp:624
CV_WRAP double getWinSigma() const
Returns winSigma value.
CV_PROP Size blockStride
Block stride. It must be a multiple of cell size. Default value is Size(8,8).
Definition objdetect.hpp:627
void groupRectangles(std::vector< cv::Rect > &rectList, std::vector< double > &weights, int groupThreshold, double eps) const
Groups the object candidate rectangles.
virtual void detectMultiScaleROI(InputArray img, CV_OUT std::vector< cv::Rect > &foundLocations, std::vector< DetectionROI > &locations, double hitThreshold=0, int groupThreshold=0) const
evaluate specified ROI and return confidence value for each location in multiple scales
virtual CV_WRAP void setSVMDetector(InputArray svmdetector)
Sets coefficients for the linear SVM classifier.
static CV_WRAP std::vector< float > getDaimlerPeopleDetector()
Returns coefficients of the classifier trained for people detection (for 48x96 windows).
virtual CV_WRAP void detectMultiScale(InputArray img, CV_OUT std::vector< Rect > &foundLocations, CV_OUT std::vector< double > &foundWeights, double hitThreshold=0, Size winStride=Size(), Size padding=Size(), double scale=1.05, double groupThreshold=2.0, bool useMeanshiftGrouping=false) const
Detects objects of different sizes in the input image. The detected objects are returned as a list of...
Definition cvstd_wrapper.hpp:74
Definition objdetect.hpp:817
CV_PROP_RW float maxRotation
The maximum allowed relative rotation for finder patterns in the same QR code, default pi/12.
Definition objdetect.hpp:824
CV_PROP_RW float maxPenalties
The maximum allowed percentage of penalty points out of total pins in timing pattern,...
Definition objdetect.hpp:836
CV_PROP_RW float maxModuleSizeMismatch
The maximum allowed relative mismatch in module sizes for finder patterns in the same QR code,...
Definition objdetect.hpp:827
CV_PROP_RW float maxTimingPatternMismatch
The maximum allowed module relative mismatch for timing pattern module, default 2....
Definition objdetect.hpp:833
CV_PROP_RW float minModuleSizeInPyramid
The minimum allowed pixel size of a QR module in the smallest image in the image pyramid,...
Definition objdetect.hpp:821
CV_PROP_RW float scaleTimingPatternScore
The algorithm find QR codes with almost minimum timing pattern score and minimum size,...
Definition objdetect.hpp:846
CV_PROP_RW float maxColorsMismatch
The maximum allowed relative color mismatch in the timing pattern, default 0.2f.
Definition objdetect.hpp:839
QR code encoder parameters.
Definition objdetect.hpp:737
CV_PROP_RW CorrectionLevel correction_level
The optional level of error correction (by default - the lowest).
Definition objdetect.hpp:744
CV_PROP_RW int version
The optional version of QR code (by default - maximum possible depending on the length of the string)...
Definition objdetect.hpp:741
CV_PROP_RW EncodeMode mode
The optional encoding mode - Numeric, Alphanumeric, Byte, Kanji, ECI or Structured Append.
Definition objdetect.hpp:747
CV_PROP_RW int structure_number
The optional number of QR codes to generate in Structured Append mode.
Definition objdetect.hpp:750
struct DetectorParameters is used by ArucoDetector
Definition aruco_detector.hpp:25