EstervQrCode 2.0.0
Library for qr code manipulation
Loading...
Searching...
No Matches
Public Member Functions | Public Attributes | List of all members
cv::KalmanFilter Class Reference

Kalman filter class. More...

#include <tracking.hpp>

Public Member Functions

CV_WRAP KalmanFilter ()
 
CV_WRAP KalmanFilter (int dynamParams, int measureParams, int controlParams=0, int type=CV_32F)
 
void init (int dynamParams, int measureParams, int controlParams=0, int type=CV_32F)
 Re-initializes Kalman filter. The previous content is destroyed.
 
CV_WRAP const Matpredict (const Mat &control=Mat())
 Computes a predicted state.
 
CV_WRAP const Matcorrect (const Mat &measurement)
 Updates the predicted state from the measurement.
 

Public Attributes

CV_PROP_RW Mat statePre
 predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
 
CV_PROP_RW Mat statePost
 corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
 
CV_PROP_RW Mat transitionMatrix
 state transition matrix (A)
 
CV_PROP_RW Mat controlMatrix
 control matrix (B) (not used if there is no control)
 
CV_PROP_RW Mat measurementMatrix
 measurement matrix (H)
 
CV_PROP_RW Mat processNoiseCov
 process noise covariance matrix (Q)
 
CV_PROP_RW Mat measurementNoiseCov
 measurement noise covariance matrix (R)
 
CV_PROP_RW Mat errorCovPre
 priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*‍/
 
CV_PROP_RW Mat gain
 Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
 
CV_PROP_RW Mat errorCovPost
 posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
 
Mat temp1
 
Mat temp2
 
Mat temp3
 
Mat temp4
 
Mat temp5
 

Detailed Description

Kalman filter class.

The class implements a standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter, [Welch95] . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality.

Note
In C API when CvKalman* kalmanFilter structure is not needed anymore, it should be released with cvReleaseKalman(&kalmanFilter)

Constructor & Destructor Documentation

◆ KalmanFilter() [1/2]

CV_WRAP cv::KalmanFilter::KalmanFilter ( )

◆ KalmanFilter() [2/2]

CV_WRAP cv::KalmanFilter::KalmanFilter ( int  dynamParams,
int  measureParams,
int  controlParams = 0,
int  type = CV_32F 
)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

Parameters
dynamParamsDimensionality of the state.
measureParamsDimensionality of the measurement.
controlParamsDimensionality of the control vector.
typeType of the created matrices that should be CV_32F or CV_64F.

Member Function Documentation

◆ correct()

CV_WRAP const Mat & cv::KalmanFilter::correct ( const Mat measurement)

Updates the predicted state from the measurement.

Parameters
measurementThe measured system parameters

◆ init()

void cv::KalmanFilter::init ( int  dynamParams,
int  measureParams,
int  controlParams = 0,
int  type = CV_32F 
)

Re-initializes Kalman filter. The previous content is destroyed.

Parameters
dynamParamsDimensionality of the state.
measureParamsDimensionality of the measurement.
controlParamsDimensionality of the control vector.
typeType of the created matrices that should be CV_32F or CV_64F.

◆ predict()

CV_WRAP const Mat & cv::KalmanFilter::predict ( const Mat control = Mat())

Computes a predicted state.

Parameters
controlThe optional input control

Member Data Documentation

◆ controlMatrix

CV_PROP_RW Mat cv::KalmanFilter::controlMatrix

control matrix (B) (not used if there is no control)

◆ errorCovPost

CV_PROP_RW Mat cv::KalmanFilter::errorCovPost

posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)

◆ errorCovPre

CV_PROP_RW Mat cv::KalmanFilter::errorCovPre

priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*‍/

◆ gain

CV_PROP_RW Mat cv::KalmanFilter::gain

Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)

◆ measurementMatrix

CV_PROP_RW Mat cv::KalmanFilter::measurementMatrix

measurement matrix (H)

◆ measurementNoiseCov

CV_PROP_RW Mat cv::KalmanFilter::measurementNoiseCov

measurement noise covariance matrix (R)

◆ processNoiseCov

CV_PROP_RW Mat cv::KalmanFilter::processNoiseCov

process noise covariance matrix (Q)

◆ statePost

CV_PROP_RW Mat cv::KalmanFilter::statePost

corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))

◆ statePre

CV_PROP_RW Mat cv::KalmanFilter::statePre

predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)

◆ temp1

Mat cv::KalmanFilter::temp1

◆ temp2

Mat cv::KalmanFilter::temp2

◆ temp3

Mat cv::KalmanFilter::temp3

◆ temp4

Mat cv::KalmanFilter::temp4

◆ temp5

Mat cv::KalmanFilter::temp5

◆ transitionMatrix

CV_PROP_RW Mat cv::KalmanFilter::transitionMatrix

state transition matrix (A)


The documentation for this class was generated from the following file: