43 #ifndef OPENCV_FEATURES_2D_HPP
44 #define OPENCV_FEATURES_2D_HPP
46 #include "opencv2/opencv_modules.hpp"
47 #include "opencv2/core.hpp"
49 #ifdef HAVE_OPENCV_FLANN
50 #include "opencv2/flann/miniflann.hpp"
105 float maxSize=FLT_MAX );
134 #ifdef __EMSCRIPTEN__
199 bool useProvidedKeypoints=
false );
220 #if CV_VERSION_MAJOR < 5
252 int maxTilt = 5,
int minTilt = 0,
float tiltStep = 1.4142135623730951f,
float rotateStepBase = 72);
295 double contrastThreshold = 0.04,
double edgeThreshold = 10,
296 double sigma = 1.6,
bool enable_precise_upscale =
false);
326 double contrastThreshold,
double edgeThreshold,
327 double sigma,
int descriptorType,
bool enable_precise_upscale =
false);
331 CV_WRAP virtual
void setNFeatures(
int maxFeatures) = 0;
334 CV_WRAP virtual
void setNOctaveLayers(
int nOctaveLayers) = 0;
335 CV_WRAP virtual
int getNOctaveLayers() const = 0;
337 CV_WRAP virtual
void setContrastThreshold(
double contrastThreshold) = 0;
338 CV_WRAP virtual
double getContrastThreshold() const = 0;
340 CV_WRAP virtual
void setEdgeThreshold(
double edgeThreshold) = 0;
341 CV_WRAP virtual
double getEdgeThreshold() const = 0;
343 CV_WRAP virtual
void setSigma(
double sigma) = 0;
406 CV_WRAP virtual
void setOctaves(
int octaves) = 0;
412 CV_WRAP virtual
void setPatternScale(
float patternScale) = 0;
413 CV_WRAP virtual
float getPatternScale() const = 0;
427 static const int kBytes = 32;
523 double max_variation=0.25,
double min_diversity=.2,
524 int max_evolution=200,
double area_threshold=1.01,
525 double min_margin=0.003,
int edge_blur_size=5 );
578 TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2
582 THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002
587 bool nonmaxSuppression=
true,
603 int threshold,
bool nonmaxSuppression=true );
634 AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
639 THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001,
643 bool nonmaxSuppression=
true,
659 int threshold,
bool nonmaxSuppression=true );
818 int nOctaves = 4,
int nOctaveLayers = 4,
863 DESCRIPTOR_KAZE_UPRIGHT = 2,
865 DESCRIPTOR_MLDB_UPRIGHT = 4,
885 int descriptor_size = 0,
int descriptor_channels = 3,
886 float threshold = 0.001f,
int nOctaves = 4,
888 int max_points = -1);
912 CV_WRAP virtual
void setMaxPoints(
int max_points) = 0;
944 return normL2Sqr<ValueType, ResultType>(a, b,
size);
976 return normL1<ValueType, ResultType>(a, b,
size);
1002 BRUTEFORCE_HAMMING = 4,
1003 BRUTEFORCE_HAMMINGLUT = 5,
1189 #if CV_VERSION_MAJOR < 5
1212 void getLocalIdx(
int globalDescIdx,
int& imgIdx,
int& localDescIdx )
const;
1284 #if defined(HAVE_OPENCV_FLANN) || defined(CV_DOXYGEN)
1315 const Mat& indices,
const Mat& distances,
1428 float& repeatability,
int& correspCount,
1432 const
std::vector<
std::vector<
uchar> >& correctMatches1to2Mask,
1433 std::vector<
Point2f>& recallPrecisionCurve );
1582 { compute(image,keypoints,imgDescriptor); }
Class implementing the AKAZE keypoint detector and descriptor extractor, described in .
Definition: features2d.hpp:858
virtual CV_WRAP void setDiffusivity(KAZE::DiffusivityType diff)=0
virtual CV_WRAP void setDescriptorSize(int dsize)=0
virtual CV_WRAP AKAZE::DescriptorType getDescriptorType() const =0
static CV_WRAP Ptr< AKAZE > create(AKAZE::DescriptorType descriptor_type=AKAZE::DESCRIPTOR_MLDB, int descriptor_size=0, int descriptor_channels=3, float threshold=0.001f, int nOctaves=4, int nOctaveLayers=4, KAZE::DiffusivityType diffusivity=KAZE::DIFF_PM_G2, int max_points=-1)
The AKAZE constructor.
virtual CV_WRAP double getThreshold() const =0
virtual CV_WRAP int getNOctaves() const =0
DescriptorType
Definition: features2d.hpp:862
@ DESCRIPTOR_MLDB
Definition: features2d.hpp:866
virtual CV_WRAP void setNOctaves(int octaves)=0
virtual CV_WRAP int getDescriptorChannels() const =0
virtual CV_WRAP void setThreshold(double threshold)=0
virtual CV_WRAP void setNOctaveLayers(int octaveLayers)=0
virtual CV_WRAP void setDescriptorChannels(int dch)=0
virtual CV_WRAP int getNOctaveLayers() const =0
virtual CV_WRAP void setDescriptorType(AKAZE::DescriptorType dtype)=0
virtual CV_WRAP int getDescriptorSize() const =0
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
virtual CV_WRAP KAZE::DiffusivityType getDiffusivity() const =0
Class for implementing the wrapper which makes detectors and extractors to be affine invariant,...
Definition: features2d.hpp:242
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
static CV_WRAP Ptr< AffineFeature > create(const Ptr< Feature2D > &backend, int maxTilt=5, int minTilt=0, float tiltStep=1.4142135623730951f, float rotateStepBase=72)
virtual CV_WRAP void setViewParams(const std::vector< float > &tilts, const std::vector< float > &rolls)=0
virtual CV_WRAP void getViewParams(std::vector< float > &tilts, std::vector< float > &rolls) const =0
Wrapping class for feature detection using the AGAST method. :
Definition: features2d.hpp:630
virtual CV_WRAP bool getNonmaxSuppression() const =0
virtual CV_WRAP void setNonmaxSuppression(bool f)=0
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
virtual CV_WRAP AgastFeatureDetector::DetectorType getType() const =0
virtual CV_WRAP int getThreshold() const =0
static CV_WRAP Ptr< AgastFeatureDetector > create(int threshold=10, bool nonmaxSuppression=true, AgastFeatureDetector::DetectorType type=AgastFeatureDetector::OAST_9_16)
virtual CV_WRAP void setThreshold(int threshold)=0
DetectorType
Definition: features2d.hpp:633
@ OAST_9_16
Definition: features2d.hpp:634
virtual CV_WRAP void setType(AgastFeatureDetector::DetectorType type)=0
This is a base class for all more or less complex algorithms in OpenCV.
Definition: core.hpp:3197
virtual CV_WRAP void write(FileStorage &fs) const
Stores algorithm parameters in a file storage.
Definition: core.hpp:3208
Brute-force descriptor matcher.
Definition: features2d.hpp:1247
virtual bool isMaskSupported() const CV_OVERRIDE
Returns true if the descriptor matcher supports masking permissible matches.
Definition: features2d.hpp:1257
virtual ~BFMatcher()
Definition: features2d.hpp:1255
CV_WRAP BFMatcher(int normType=NORM_L2, bool crossCheck=false)
Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
static CV_WRAP Ptr< BFMatcher > create(int normType=NORM_L2, bool crossCheck=false)
Brute-force matcher create method.
virtual CV_NODISCARD_STD Ptr< DescriptorMatcher > clone(bool emptyTrainData=false) const CV_OVERRIDE
Clones the matcher.
kmeans -based class to train visual vocabulary using the bag of visual words approach....
Definition: features2d.hpp:1499
virtual CV_WRAP Mat cluster() const CV_OVERRIDE
virtual ~BOWKMeansTrainer()
CV_WRAP BOWKMeansTrainer(int clusterCount, const TermCriteria &termcrit=TermCriteria(), int attempts=3, int flags=KMEANS_PP_CENTERS)
The constructor.
Abstract base class for training the bag of visual words vocabulary from a set of descriptors.
Definition: features2d.hpp:1453
int size
Definition: features2d.hpp:1493
std::vector< Mat > descriptors
Definition: features2d.hpp:1492
CV_WRAP void add(const Mat &descriptors)
Adds descriptors to a training set.
CV_WRAP const std::vector< Mat > & getDescriptors() const
Returns a training set of descriptors.
virtual CV_WRAP void clear()
virtual CV_WRAP Mat cluster() const =0
CV_WRAP int descriptorsCount() const
Returns the count of all descriptors stored in the training set.
virtual CV_WRAP Mat cluster(const Mat &descriptors) const =0
Clusters train descriptors.
Class implementing the BRISK keypoint detector and descriptor extractor, described in .
Definition: features2d.hpp:354
static CV_WRAP Ptr< BRISK > create(const std::vector< float > &radiusList, const std::vector< int > &numberList, float dMax=5.85f, float dMin=8.2f, const std::vector< int > &indexChange=std::vector< int >())
The BRISK constructor for a custom pattern.
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
static CV_WRAP Ptr< BRISK > create(int thresh=30, int octaves=3, float patternScale=1.0f)
The BRISK constructor.
static CV_WRAP Ptr< BRISK > create(int thresh, int octaves, const std::vector< float > &radiusList, const std::vector< int > &numberList, float dMax=5.85f, float dMin=8.2f, const std::vector< int > &indexChange=std::vector< int >())
The BRISK constructor for a custom pattern, detection threshold and octaves.
Class for matching keypoint descriptors.
Definition: types.hpp:842
Definition: features2d.hpp:1199
std::vector< int > startIdxs
Definition: features2d.hpp:1218
virtual ~DescriptorCollection()
Mat getDescriptor(int globalDescIdx) const
DescriptorCollection(const DescriptorCollection &collection)
void set(const std::vector< Mat > &descriptors)
const Mat & getDescriptors() const
Mat getDescriptor(int imgIdx, int localDescIdx) const
void getLocalIdx(int globalDescIdx, int &imgIdx, int &localDescIdx) const
Mat mergedDescriptors
Definition: features2d.hpp:1217
Abstract base class for matching keypoint descriptors.
Definition: features2d.hpp:995
static CV_WRAP Ptr< DescriptorMatcher > create(const DescriptorMatcher::MatcherType &matcherType)
static CV_NODISCARD_STD Mat clone_op(Mat m)
Definition: features2d.hpp:1232
virtual void knnMatchImpl(InputArray queryDescriptors, std::vector< std::vector< DMatch > > &matches, int k, InputArrayOfArrays masks=noArray(), bool compactResult=false)=0
static CV_WRAP Ptr< DescriptorMatcher > create(const String &descriptorMatcherType)
Creates a descriptor matcher of a given type with the default parameters (using default constructor).
std::vector< UMat > utrainDescCollection
Definition: features2d.hpp:1237
std::vector< Mat > trainDescCollection
Collection of descriptors from train images.
Definition: features2d.hpp:1236
virtual CV_WRAP void add(InputArrayOfArrays descriptors)
Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor coll...
CV_WRAP const std::vector< Mat > & getTrainDescriptors() const
Returns a constant link to the train descriptor collection trainDescCollection .
virtual ~DescriptorMatcher()
virtual CV_WRAP void clear() CV_OVERRIDE
Clears the train descriptor collections.
static bool isPossibleMatch(InputArray mask, int queryIdx, int trainIdx)
virtual void write(FileStorage &) const CV_OVERRIDE
Stores algorithm parameters in a file storage.
void write(const Ptr< FileStorage > &fs, const String &name) const
Definition: features2d.hpp:1190
virtual CV_WRAP void read(const FileNode &) CV_OVERRIDE
Reads algorithm parameters from a file storage.
void checkMasks(InputArrayOfArrays masks, int queryDescriptorsCount) const
static bool isMaskedOut(InputArrayOfArrays masks, int queryIdx)
CV_WRAP virtual CV_NODISCARD_STD Ptr< DescriptorMatcher > clone(bool emptyTrainData=false) const =0
Clones the matcher.
CV_WRAP void read(const String &fileName)
Definition: features2d.hpp:1152
CV_WRAP void write(FileStorage &fs, const String &name) const
Definition: features2d.hpp:1188
MatcherType
Definition: features2d.hpp:998
virtual void radiusMatchImpl(InputArray queryDescriptors, std::vector< std::vector< DMatch > > &matches, float maxDistance, InputArrayOfArrays masks=noArray(), bool compactResult=false)=0
Wrapping class for feature detection using the FAST method. :
Definition: features2d.hpp:574
virtual CV_WRAP void setNonmaxSuppression(bool f)=0
virtual CV_WRAP int getThreshold() const =0
DetectorType
Definition: features2d.hpp:577
@ TYPE_9_16
Definition: features2d.hpp:578
virtual CV_WRAP void setType(FastFeatureDetector::DetectorType type)=0
virtual CV_WRAP void setThreshold(int threshold)=0
virtual CV_WRAP FastFeatureDetector::DetectorType getType() const =0
static CV_WRAP Ptr< FastFeatureDetector > create(int threshold=10, bool nonmaxSuppression=true, FastFeatureDetector::DetectorType type=FastFeatureDetector::TYPE_9_16)
virtual CV_WRAP bool getNonmaxSuppression() const =0
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
Abstract base class for 2D image feature detectors and descriptor extractors.
Definition: features2d.hpp:139
CV_WRAP void read(const String &fileName)
virtual CV_WRAP void detect(InputArrayOfArrays images, CV_OUT std::vector< std::vector< KeyPoint > > &keypoints, InputArrayOfArrays masks=noArray())
virtual void write(FileStorage &) const CV_OVERRIDE
Stores algorithm parameters in a file storage.
virtual CV_WRAP void compute(InputArray image, CV_OUT CV_IN_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors)
Computes the descriptors for a set of keypoints detected in an image (first variant) or image set (se...
virtual CV_WRAP void detect(InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, InputArray mask=noArray())
Detects keypoints in an image (first variant) or image set (second variant).
CV_WRAP void write(const String &fileName) const
virtual CV_WRAP int descriptorType() const
virtual CV_WRAP void detectAndCompute(InputArray image, InputArray mask, CV_OUT std::vector< KeyPoint > &keypoints, OutputArray descriptors, bool useProvidedKeypoints=false)
virtual CV_WRAP bool empty() const CV_OVERRIDE
Return true if detector object is empty.
virtual CV_WRAP void read(const FileNode &) CV_OVERRIDE
Reads algorithm parameters from a file storage.
virtual CV_WRAP int defaultNorm() const
virtual CV_WRAP int descriptorSize() const
virtual CV_WRAP void compute(InputArrayOfArrays images, CV_OUT CV_IN_OUT std::vector< std::vector< KeyPoint > > &keypoints, OutputArrayOfArrays descriptors)
void write(const Ptr< FileStorage > &fs, const String &name) const
Definition: features2d.hpp:221
File Storage Node class.
Definition: persistence.hpp:482
XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or readi...
Definition: persistence.hpp:304
CV_WRAP FileNode root(int streamidx=0) const
Returns the top-level mapping.
@ WRITE
value, open the file for writing
Definition: persistence.hpp:310
@ READ
value, open the file for reading
Definition: persistence.hpp:309
Wrapping class for feature detection using the goodFeaturesToTrack function. :
Definition: features2d.hpp:685
static CV_WRAP Ptr< GFTTDetector > create(int maxCorners, double qualityLevel, double minDistance, int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04)
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
virtual CV_WRAP void setMaxFeatures(int maxFeatures)=0
virtual CV_WRAP void setGradientSize(int gradientSize_)=0
virtual CV_WRAP double getMinDistance() const =0
virtual CV_WRAP void setQualityLevel(double qlevel)=0
virtual CV_WRAP void setMinDistance(double minDistance)=0
virtual CV_WRAP int getGradientSize()=0
virtual CV_WRAP void setK(double k)=0
virtual CV_WRAP int getBlockSize() const =0
virtual CV_WRAP bool getHarrisDetector() const =0
virtual CV_WRAP void setHarrisDetector(bool val)=0
virtual CV_WRAP double getK() const =0
static CV_WRAP Ptr< GFTTDetector > create(int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, int blockSize=3, bool useHarrisDetector=false, double k=0.04)
virtual CV_WRAP void setBlockSize(int blockSize)=0
virtual CV_WRAP int getMaxFeatures() const =0
virtual CV_WRAP double getQualityLevel() const =0
Class implementing the KAZE keypoint detector and descriptor extractor, described in .
Definition: features2d.hpp:796
virtual CV_WRAP void setThreshold(double threshold)=0
virtual CV_WRAP int getNOctaves() const =0
virtual CV_WRAP void setExtended(bool extended)=0
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
virtual CV_WRAP KAZE::DiffusivityType getDiffusivity() const =0
virtual CV_WRAP void setNOctaves(int octaves)=0
virtual CV_WRAP bool getUpright() const =0
virtual CV_WRAP double getThreshold() const =0
virtual CV_WRAP void setNOctaveLayers(int octaveLayers)=0
DiffusivityType
Definition: features2d.hpp:799
@ DIFF_PM_G2
Definition: features2d.hpp:801
virtual CV_WRAP void setDiffusivity(KAZE::DiffusivityType diff)=0
static CV_WRAP Ptr< KAZE > create(bool extended=false, bool upright=false, float threshold=0.001f, int nOctaves=4, int nOctaveLayers=4, KAZE::DiffusivityType diffusivity=KAZE::DIFF_PM_G2)
The KAZE constructor.
virtual CV_WRAP void setUpright(bool upright)=0
virtual CV_WRAP bool getExtended() const =0
virtual CV_WRAP int getNOctaveLayers() const =0
Data structure for salient point detectors.
Definition: types.hpp:745
A class filters a vector of keypoints.
Definition: features2d.hpp:93
static void runByKeypointSize(std::vector< KeyPoint > &keypoints, float minSize, float maxSize=FLT_MAX)
KeyPointsFilter()
Definition: features2d.hpp:95
static void removeDuplicatedSorted(std::vector< KeyPoint > &keypoints)
static void runByImageBorder(std::vector< KeyPoint > &keypoints, Size imageSize, int borderSize)
static void removeDuplicated(std::vector< KeyPoint > &keypoints)
static void retainBest(std::vector< KeyPoint > &keypoints, int npoints)
static void runByPixelsMask(std::vector< KeyPoint > &keypoints, const Mat &mask)
static void runByPixelsMask2VectorPoint(std::vector< KeyPoint > &keypoints, std::vector< std::vector< Point > > &removeFrom, const Mat &mask)
Maximally stable extremal region extractor.
Definition: features2d.hpp:508
virtual CV_WRAP bool getPass2Only() const =0
virtual CV_WRAP int getMaxEvolution() const =0
virtual CV_WRAP void setMinDiversity(double minDiversity)=0
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
virtual CV_WRAP void setAreaThreshold(double areaThreshold)=0
virtual CV_WRAP void setEdgeBlurSize(int edge_blur_size)=0
virtual CV_WRAP void setMinArea(int minArea)=0
virtual CV_WRAP void setPass2Only(bool f)=0
virtual CV_WRAP void setMaxArea(int maxArea)=0
virtual CV_WRAP int getMinArea() const =0
static CV_WRAP Ptr< MSER > create(int delta=5, int min_area=60, int max_area=14400, double max_variation=0.25, double min_diversity=.2, int max_evolution=200, double area_threshold=1.01, double min_margin=0.003, int edge_blur_size=5)
Full constructor for MSER detector.
virtual CV_WRAP double getAreaThreshold() const =0
virtual CV_WRAP double getMinDiversity() const =0
virtual CV_WRAP void setMaxVariation(double maxVariation)=0
virtual CV_WRAP int getMaxArea() const =0
virtual CV_WRAP void setMinMargin(double min_margin)=0
virtual CV_WRAP void detectRegions(InputArray image, CV_OUT std::vector< std::vector< Point > > &msers, CV_OUT std::vector< Rect > &bboxes)=0
Detect MSER regions.
virtual CV_WRAP void setDelta(int delta)=0
virtual CV_WRAP double getMaxVariation() const =0
virtual CV_WRAP int getEdgeBlurSize() const =0
virtual CV_WRAP int getDelta() const =0
virtual CV_WRAP double getMinMargin() const =0
virtual CV_WRAP void setMaxEvolution(int maxEvolution)=0
n-dimensional dense array class
Definition: mat.hpp:812
CV_NODISCARD_STD Mat clone() const
Creates a full copy of the array and the underlying data.
Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor.
Definition: features2d.hpp:424
virtual CV_WRAP void setFirstLevel(int firstLevel)=0
virtual CV_WRAP int getEdgeThreshold() const =0
virtual CV_WRAP void setMaxFeatures(int maxFeatures)=0
static CV_WRAP Ptr< ORB > create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31, int firstLevel=0, int WTA_K=2, ORB::ScoreType scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20)
The ORB constructor.
virtual CV_WRAP void setWTA_K(int wta_k)=0
virtual CV_WRAP void setEdgeThreshold(int edgeThreshold)=0
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
ScoreType
Definition: features2d.hpp:426
@ HARRIS_SCORE
Definition: features2d.hpp:426
virtual CV_WRAP void setScoreType(ORB::ScoreType scoreType)=0
virtual CV_WRAP int getMaxFeatures() const =0
virtual CV_WRAP void setNLevels(int nlevels)=0
virtual CV_WRAP void setScaleFactor(double scaleFactor)=0
virtual CV_WRAP void setPatchSize(int patchSize)=0
virtual CV_WRAP int getFastThreshold() const =0
virtual CV_WRAP double getScaleFactor() const =0
virtual CV_WRAP int getFirstLevel() const =0
virtual CV_WRAP ORB::ScoreType getScoreType() const =0
virtual CV_WRAP int getWTA_K() const =0
virtual CV_WRAP int getPatchSize() const =0
virtual CV_WRAP void setFastThreshold(int fastThreshold)=0
virtual CV_WRAP int getNLevels() const =0
Template class for 2D points specified by its coordinates x and y.
Definition: types.hpp:163
Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform ...
Definition: features2d.hpp:267
static CV_WRAP Ptr< SIFT > create(int nfeatures=0, int nOctaveLayers=3, double contrastThreshold=0.04, double edgeThreshold=10, double sigma=1.6, bool enable_precise_upscale=false)
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
static CV_WRAP Ptr< SIFT > create(int nfeatures, int nOctaveLayers, double contrastThreshold, double edgeThreshold, double sigma, int descriptorType, bool enable_precise_upscale=false)
Create SIFT with specified descriptorType.
Class for extracting blobs from an image. :
Definition: features2d.hpp:746
virtual CV_WRAP SimpleBlobDetector::Params getParams() const =0
virtual CV_WRAP String getDefaultName() const CV_OVERRIDE
virtual CV_WRAP void setParams(const SimpleBlobDetector::Params ¶ms)=0
static CV_WRAP Ptr< SimpleBlobDetector > create(const SimpleBlobDetector::Params ¶meters=SimpleBlobDetector::Params())
Template class for specifying the size of an image or rectangle.
Definition: types.hpp:335
The class defining termination criteria for iterative algorithms.
Definition: types.hpp:886
This type is very similar to InputArray except that it is used for input/output and output function p...
Definition: mat.hpp:296
CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera(InputArrayOfArrays objectPoints
Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
InputArrayOfArrays InputArrayOfArrays InputOutputArray InputOutputArray InputOutputArray InputOutputArray Size InputOutputArray InputOutputArray T
Definition: calib3d.hpp:1867
InputArrayOfArrays Size InputOutputArray InputOutputArray OutputArrayOfArrays OutputArrayOfArrays OutputArray OutputArray OutputArray int flags
Definition: calib3d.hpp:1617
InputArrayOfArrays Size imageSize
Definition: calib3d.hpp:1611
CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask=noArray(), int dtype=-1)
Calculates the per-element sum of two arrays or an array and a scalar.
NormTypes
Definition: base.hpp:159
@ NORM_L2
Definition: base.hpp:185
@ NORM_L1
Definition: base.hpp:176
@ NORM_L2SQR
Definition: base.hpp:194
CV_EXPORTS InputOutputArray noArray()
InputArray InputArrayOfArrays
Definition: mat.hpp:443
CV__DEBUG_NS_END typedef const _InputArray & InputArray
Definition: mat.hpp:442
CvSize size
Definition: core_c.h:112
int int type
Definition: core_c.h:221
int CvArr CvTermCriteria termcrit
Definition: core_c.h:1927
@ KMEANS_PP_CENTERS
Definition: core.hpp:213
unsigned char uchar
Definition: interface.h:51
#define CV_EXPORTS_W_SIMPLE
Definition: cvdef.h:473
#define CV_EXPORTS
Definition: cvdef.h:435
#define CV_IN_OUT
Definition: cvdef.h:477
#define CV_ENUM_FLAGS(EnumType)
Definition: cvdef.h:649
#define CV_OVERRIDE
Definition: cvdef.h:792
#define CV_OUT
Definition: cvdef.h:478
#define CV_NODISCARD_STD
Definition: cvdef.h:767
#define CV_EXPORTS_W
Definition: cvdef.h:472
#define CV_PROP_RW
Definition: cvdef.h:480
#define CV_WRAP
Definition: cvdef.h:481
#define CV_Assert(expr)
Checks a condition at runtime and throws exception if it fails.
Definition: base.hpp:342
CV_EXPORTS_W void drawMatches(InputArray img1, const std::vector< KeyPoint > &keypoints1, InputArray img2, const std::vector< KeyPoint > &keypoints2, const std::vector< DMatch > &matches1to2, InputOutputArray outImg, const Scalar &matchColor=Scalar::all(-1), const Scalar &singlePointColor=Scalar::all(-1), const std::vector< char > &matchesMask=std::vector< char >(), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT)
Draws the found matches of keypoints from two images.
const std::vector< KeyPoint > InputArray const std::vector< KeyPoint > const std::vector< std::vector< DMatch > > InputOutputArray outImg
Definition: features2d.hpp:1413
DrawMatchesFlags
Definition: features2d.hpp:1343
const std::vector< KeyPoint > InputArray const std::vector< KeyPoint > & keypoints2
Definition: features2d.hpp:1412
const std::vector< KeyPoint > InputArray const std::vector< KeyPoint > const std::vector< std::vector< DMatch > > InputOutputArray const Scalar const Scalar const std::vector< std::vector< char > > & matchesMask
Definition: features2d.hpp:1415
const std::vector< KeyPoint > InputArray img2
Definition: features2d.hpp:1412
const std::vector< KeyPoint > & keypoints1
Definition: features2d.hpp:1411
const std::vector< KeyPoint > InputArray const std::vector< KeyPoint > const std::vector< std::vector< DMatch > > & matches1to2
Definition: features2d.hpp:1413
CV_EXPORTS_W void drawKeypoints(InputArray image, const std::vector< KeyPoint > &keypoints, InputOutputArray outImage, const Scalar &color=Scalar::all(-1), DrawMatchesFlags flags=DrawMatchesFlags::DEFAULT)
Draws keypoints.
const std::vector< KeyPoint > InputArray const std::vector< KeyPoint > const std::vector< std::vector< DMatch > > InputOutputArray const Scalar const Scalar & singlePointColor
Definition: features2d.hpp:1414
const std::vector< KeyPoint > InputArray const std::vector< KeyPoint > const std::vector< std::vector< DMatch > > InputOutputArray const Scalar & matchColor
Definition: features2d.hpp:1414
@ NOT_DRAW_SINGLE_POINTS
Single keypoints will not be drawn.
Feature2D FeatureDetector
Definition: features2d.hpp:228
CV_EXPORTS void evaluateFeatureDetector(const Mat &img1, const Mat &img2, const Mat &H1to2, std::vector< KeyPoint > *keypoints1, std::vector< KeyPoint > *keypoints2, float &repeatability, int &correspCount, const Ptr< FeatureDetector > &fdetector=Ptr< FeatureDetector >())
CV_EXPORTS void computeRecallPrecisionCurve(const std::vector< std::vector< DMatch > > &matches1to2, const std::vector< std::vector< uchar > > &correctMatches1to2Mask, std::vector< Point2f > &recallPrecisionCurve)
CV_EXPORTS int getNearestPoint(const std::vector< Point2f > &recallPrecisionCurve, float l_precision)
CV_EXPORTS float getRecall(const std::vector< Point2f > &recallPrecisionCurve, float l_precision)
CV_EXPORTS void FAST(InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression=true)
CV_EXPORTS void AGAST(InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression=true)
Feature2D DescriptorExtractor
Definition: features2d.hpp:235
CvPoint CvPoint CvScalar color
Definition: imgproc_c.h:968
CvSize int int int CvPoint int delta
Definition: imgproc_c.h:1168
CV_EXPORTS OutputArray int double double InputArray OutputArray int int bool useHarrisDetector
Definition: imgproc.hpp:2133
CV_EXPORTS OutputArray int maxCorners
Definition: imgproc.hpp:2131
CV_EXPORTS OutputArray int double qualityLevel
Definition: imgproc.hpp:2131
CV_EXPORTS OutputArray int double double InputArray mask
Definition: imgproc.hpp:2132
CV_EXPORTS OutputArray int double double InputArray OutputArray int blockSize
Definition: imgproc.hpp:2132
CV_EXPORTS OutputArray int double double InputArray OutputArray int int bool double k
Definition: imgproc.hpp:2133
CV_EXPORTS OutputArray int double double minDistance
Definition: imgproc.hpp:2131
CV_EXPORTS_W double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type)
Applies a fixed-level threshold to each array element.
"black box" representation of the file storage associated with a file on disk.
Definition: calib3d.hpp:441
CV_EXPORTS void read(const FileNode &node, int &value, int default_value)
CV_EXPORTS void write(FileStorage &fs, const String &name, int value)
float Type
Definition: features2d.hpp:929
float Type
Definition: features2d.hpp:930
float Type
Definition: features2d.hpp:927
float Type
Definition: features2d.hpp:928
Definition: features2d.hpp:923
T Type
Definition: features2d.hpp:924
Definition: features2d.hpp:969
T ValueType
Definition: features2d.hpp:971
Accumulator< T >::Type ResultType
Definition: features2d.hpp:972
ResultType operator()(const T *a, const T *b, int size) const
Definition: features2d.hpp:974
Definition: features2d.hpp:953
Accumulator< T >::Type ResultType
Definition: features2d.hpp:956
ResultType operator()(const T *a, const T *b, int size) const
Definition: features2d.hpp:958
T ValueType
Definition: features2d.hpp:955
Definition: cvstd_wrapper.hpp:74
Definition: features2d.hpp:937
ResultType operator()(const T *a, const T *b, int size) const
Definition: features2d.hpp:942
T ValueType
Definition: features2d.hpp:939
Accumulator< T >::Type ResultType
Definition: features2d.hpp:940
Definition: features2d.hpp:749
CV_PROP_RW float maxCircularity
Definition: features2d.hpp:764
void write(FileStorage &fs) const
CV_PROP_RW float maxArea
Definition: features2d.hpp:761
void read(const FileNode &fn)
CV_PROP_RW bool filterByConvexity
Definition: features2d.hpp:769
CV_PROP_RW size_t minRepeatability
Definition: features2d.hpp:754
CV_PROP_RW bool filterByCircularity
Definition: features2d.hpp:763
CV_PROP_RW bool filterByArea
Definition: features2d.hpp:760
CV_PROP_RW float maxConvexity
Definition: features2d.hpp:770
CV_PROP_RW float maxThreshold
Definition: features2d.hpp:753
CV_PROP_RW bool filterByColor
Definition: features2d.hpp:757
CV_PROP_RW bool collectContours
Definition: features2d.hpp:772
CV_PROP_RW float minDistBetweenBlobs
Definition: features2d.hpp:755
CV_PROP_RW bool filterByInertia
Definition: features2d.hpp:766
CV_PROP_RW float minThreshold
Definition: features2d.hpp:752
CV_PROP_RW float thresholdStep
Definition: features2d.hpp:751
CV_PROP_RW uchar blobColor
Definition: features2d.hpp:758
CV_PROP_RW float maxInertiaRatio
Definition: features2d.hpp:767