EstervQrCode 1.1.1
Library for qr code manipulation
Classes | Typedefs | Functions
Feature Detection and Description

Classes

class  cv::KeyPointsFilter
 A class filters a vector of keypoints. More...
 
class  cv::Feature2D
 Abstract base class for 2D image feature detectors and descriptor extractors. More...
 
class  cv::AffineFeature
 Class for implementing the wrapper which makes detectors and extractors to be affine invariant, described as ASIFT in [YM11] . More...
 
class  cv::SIFT
 Class for extracting keypoints and computing descriptors using the Scale Invariant Feature Transform (SIFT) algorithm by D. Lowe [Lowe04] . More...
 
class  cv::BRISK
 Class implementing the BRISK keypoint detector and descriptor extractor, described in [LCS11] . More...
 
class  cv::ORB
 Class implementing the ORB (oriented BRIEF) keypoint detector and descriptor extractor. More...
 
class  cv::MSER
 Maximally stable extremal region extractor. More...
 
class  cv::FastFeatureDetector
 Wrapping class for feature detection using the FAST method. : More...
 
class  cv::AgastFeatureDetector
 Wrapping class for feature detection using the AGAST method. : More...
 
class  cv::GFTTDetector
 Wrapping class for feature detection using the goodFeaturesToTrack function. : More...
 
class  cv::SimpleBlobDetector
 Class for extracting blobs from an image. : More...
 
class  cv::KAZE
 Class implementing the KAZE keypoint detector and descriptor extractor, described in [ABD12] . More...
 
class  cv::AKAZE
 Class implementing the AKAZE keypoint detector and descriptor extractor, described in [ANB13]. More...
 
struct  cv::Accumulator< T >
 
struct  cv::Accumulator< unsigned char >
 
struct  cv::Accumulator< unsigned short >
 
struct  cv::Accumulator< char >
 
struct  cv::Accumulator< short >
 
struct  cv::SL2< T >
 
struct  cv::L2< T >
 
struct  cv::L1< T >
 

Typedefs

typedef Feature2D cv::FeatureDetector
 
typedef Feature2D cv::DescriptorExtractor
 
typedef AffineFeature cv::AffineFeatureDetector
 
typedef AffineFeature cv::AffineDescriptorExtractor
 
typedef SIFT cv::SiftFeatureDetector
 
typedef SIFT cv::SiftDescriptorExtractor
 

Functions

CV_EXPORTS void cv::FAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression=true)
 
CV_EXPORTS void cv::FAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression, FastFeatureDetector::DetectorType type)
 Detects corners using the FAST algorithm. More...
 
CV_EXPORTS void cv::AGAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression=true)
 
CV_EXPORTS void cv::AGAST (InputArray image, CV_OUT std::vector< KeyPoint > &keypoints, int threshold, bool nonmaxSuppression, AgastFeatureDetector::DetectorType type)
 Detects corners using the AGAST algorithm. More...
 
CV_EXPORTS void cv::evaluateFeatureDetector (const Mat &img1, const Mat &img2, const Mat &H1to2, std::vector< KeyPoint > *keypoints1, std::vector< KeyPoint > *keypoints2, float &repeatability, int &correspCount, const Ptr< FeatureDetector > &fdetector=Ptr< FeatureDetector >())
 
CV_EXPORTS void cv::computeRecallPrecisionCurve (const std::vector< std::vector< DMatch > > &matches1to2, const std::vector< std::vector< uchar > > &correctMatches1to2Mask, std::vector< Point2f > &recallPrecisionCurve)
 
CV_EXPORTS float cv::getRecall (const std::vector< Point2f > &recallPrecisionCurve, float l_precision)
 
CV_EXPORTS int cv::getNearestPoint (const std::vector< Point2f > &recallPrecisionCurve, float l_precision)
 

Detailed Description

Typedef Documentation

◆ AffineDescriptorExtractor

◆ AffineFeatureDetector

◆ DescriptorExtractor

Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem. This section is devoted to computing descriptors represented as vectors in a multidimensional space. All objects that implement the vector descriptor extractors inherit the DescriptorExtractor interface.

◆ FeatureDetector

Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch between different algorithms solving the same problem. All objects that implement keypoint detectors inherit the FeatureDetector interface.

◆ SiftDescriptorExtractor

◆ SiftFeatureDetector

Function Documentation

◆ AGAST() [1/2]

CV_EXPORTS void cv::AGAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression,
AgastFeatureDetector::DetectorType  type 
)

Detects corners using the AGAST algorithm.

Parameters
imagegrayscale image where keypoints (corners) are detected.
keypointskeypoints detected on the image.
thresholdthreshold on difference between intensity of the central pixel and pixels of a circle around this pixel.
nonmaxSuppressionif true, non-maximum suppression is applied to detected corners (keypoints).
typeone of the four neighborhoods as defined in the paper: AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d, AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16

For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results. The 32-bit binary tree tables were generated automatically from original code using perl script. The perl script and examples of tree generation are placed in features2d/doc folder. Detects corners using the AGAST algorithm by [mair2010_agast] .

◆ AGAST() [2/2]

CV_EXPORTS void cv::AGAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression = true 
)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ computeRecallPrecisionCurve()

CV_EXPORTS void cv::computeRecallPrecisionCurve ( const std::vector< std::vector< DMatch > > &  matches1to2,
const std::vector< std::vector< uchar > > &  correctMatches1to2Mask,
std::vector< Point2f > &  recallPrecisionCurve 
)

◆ evaluateFeatureDetector()

CV_EXPORTS void cv::evaluateFeatureDetector ( const Mat img1,
const Mat img2,
const Mat H1to2,
std::vector< KeyPoint > *  keypoints1,
std::vector< KeyPoint > *  keypoints2,
float &  repeatability,
int &  correspCount,
const Ptr< FeatureDetector > &  fdetector = PtrFeatureDetector >() 
)

◆ FAST() [1/2]

CV_EXPORTS void cv::FAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression,
FastFeatureDetector::DetectorType  type 
)

Detects corners using the FAST algorithm.

Parameters
imagegrayscale image where keypoints (corners) are detected.
keypointskeypoints detected on the image.
thresholdthreshold on difference between intensity of the central pixel and pixels of a circle around this pixel.
nonmaxSuppressionif true, non-maximum suppression is applied to detected corners (keypoints).
typeone of the three neighborhoods as defined in the paper: FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, FastFeatureDetector::TYPE_5_8

Detects corners using the FAST algorithm by [Rosten06] .

Note
In Python API, types are given as cv.FAST_FEATURE_DETECTOR_TYPE_5_8, cv.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner detection, use cv.FAST.detect() method.

◆ FAST() [2/2]

CV_EXPORTS void cv::FAST ( InputArray  image,
CV_OUT std::vector< KeyPoint > &  keypoints,
int  threshold,
bool  nonmaxSuppression = true 
)

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ getNearestPoint()

CV_EXPORTS int cv::getNearestPoint ( const std::vector< Point2f > &  recallPrecisionCurve,
float  l_precision 
)

◆ getRecall()

CV_EXPORTS float cv::getRecall ( const std::vector< Point2f > &  recallPrecisionCurve,
float  l_precision 
)